These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18584599)

  • 1. Modeling and analysis of elution stage of biospecific adsorption in finite bath.
    Arve BH; Liapis AI
    Biotechnol Bioeng; 1988 Feb; 31(3):240-9. PubMed ID: 18584599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biospecific adsorption in fixed and periodic countercurrent beds.
    Arve BH; Liapis AI
    Biotechnol Bioeng; 1988 Aug; 32(5):616-27. PubMed ID: 18587762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The modeling and analysis of the elution stage of biospecific adsorption in fixed beds.
    Arve BH; Liapis AI
    Biotechnol Bioeng; 1987 Oct; 30(5):638-49. PubMed ID: 18581451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interplay of diffusional and electrophoretic transport mechanisms of charged solutes in the liquid film surrounding charged nonporous adsorbent particles employed in finite bath adsorption systems.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2002 Apr; 248(2):504-20. PubMed ID: 16290557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restricted diffusion of molecules in porous affinity chromatography adsorbents.
    Petropoulos JH; Liapis AI; Kolliopoulos NP; Petrou JK; Kanellopoulos NK
    Bioseparation; 1990; 1(1):69-88. PubMed ID: 1368162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of a single protein interacting with multiple ligands: inner radial humps in the concentration profiles induced by non-uniform ligand density distributions.
    Riccardi E; Liapis AI
    J Sep Sci; 2009 Dec; 32(23-24):4059-68. PubMed ID: 19950351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A parallel pore and surface diffusion model for predicting the adsorption and elution profiles of lispro insulin and two impurities in gradient-elution reversed phase chromatography.
    Chung PL; Bugayong JG; Chin CY; Wang NH
    J Chromatogr A; 2010 Dec; 1217(52):8103-20. PubMed ID: 21074775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network modeling of the convective flow and diffusion of molecules adsorbing in monoliths and in porous particles packed in a chromatographic column.
    Meyers JJ; Liapis AI
    J Chromatogr A; 1999 Aug; 852(1):3-23. PubMed ID: 10480225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration-dependent self-diffusion of adsorbates in mesoporous materials.
    Valiullin R; Kortunov P; Kärger J; Timoshenko V
    Magn Reson Imaging; 2005 Feb; 23(2):209-14. PubMed ID: 15833614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular dynamics study on the transport of a charged biomolecule in a polymeric adsorbent medium and its adsorption onto a charged ligand.
    Riccardi E; Wang JC; Liapis AI
    J Chem Phys; 2010 Aug; 133(8):084904. PubMed ID: 20815591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-operative binding interactions in affinity chromatography: Theoretical considerations.
    Hubble J
    Biotechnol Bioeng; 1987 Aug; 30(2):208-15. PubMed ID: 18581301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frontal analysis for characterizing the adsorption-desorption behavior of beta-lactoglobulin on immunoadsorbents.
    Puerta A; Vidal-Madjar C; Jaulmes A; Diez-Masa JC; de Frutos M
    J Chromatogr A; 2006 Jun; 1119(1-2):34-42. PubMed ID: 16386750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and parametric sensitivity of the behavior of overshoots in the concentration of a charged adsorbate in the adsorbed phase of charged adsorbent particles: practical implications for separations of charged solutes.
    Zhang X; Grimes BA; Wang JC; Lacki KM; Liapis AI
    J Colloid Interface Sci; 2004 May; 273(1):22-38. PubMed ID: 15051431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the adsorbate (Bromacil) equilibrium concentration in water on its adsorption on powdered activated carbon. Part 2: Kinetic parameters.
    Al Mardini F; Legube B
    J Hazard Mater; 2009 Oct; 170(2-3):754-62. PubMed ID: 19560269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of the hysteresis phenomena in finite-sized slitlike nanopores. Revision of the recent results by rigorous numerical analysis.
    Kowalczyk P; Kaneko K; Solarz L; Terzyk AP; Tanaka H; Hołyst R
    Langmuir; 2005 Jul; 21(14):6613-27. PubMed ID: 15982075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity and other factors affecting biospecific desorption in chromatography of proteins. A study by computer simulation.
    Yon RJ
    Biochem J; 1980 Jan; 185(1):211-6. PubMed ID: 7378048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the elution behavior of proteins in affinity chromatography on non-porous particles.
    Lee WC; Chen CH
    J Biochem Biophys Methods; 2001 Oct; 49(1-3):63-82. PubMed ID: 11694273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the chromatographic retention of polymers: application of the polymer model to poly(styrene/ethylacrylate)copolymers.
    Bashir MA; Radke W
    J Chromatogr A; 2012 Feb; 1225():107-12. PubMed ID: 22227362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic interaction chromatography of proteins III. Transport and kinetic parameters in isocratic elution.
    To BC; Lenhoff AM
    J Chromatogr A; 2008 Sep; 1205(1-2):46-59. PubMed ID: 18718599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.