BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 18584617)

  • 1. Production of optically active 2,3-butanediol by Bacillus polymyxa.
    De Mas C; Jansen NB; Tsao GT
    Biotechnol Bioeng; 1988 Mar; 31(4):366-77. PubMed ID: 18584617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of oxygen on steady-state product distribution in Bacillus polymyxa fermentations.
    Mankad T; Nauman EB
    Biotechnol Bioeng; 1992 Jul; 40(3):413-26. PubMed ID: 18601132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial consortium that produces riboflavin regulates distribution of acetoin and 2,3-butanediol by
    Liu L; Xu QM; Chen T; Cheng JS; Yuan YJ
    Eng Life Sci; 2017 Sep; 17(9):1039-1049. PubMed ID: 32624854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medium composition and aeration to high (R,R)-2,3-butanediol and acetoin production by Paenibacillus polymyxa in fed-batch mode.
    Folle AB; de Souza BC; Reginatto C; Carra S; da Silveira MM; Malvessi E; Dillon AJP
    Arch Microbiol; 2023 Apr; 205(5):171. PubMed ID: 37017720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions.
    Zeng AP; Byun TG; Posten C; Deckwer WD
    Biotechnol Bioeng; 1994 Nov; 44(9):1107-14. PubMed ID: 18623028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365.
    Häßler T; Schieder D; Pfaller R; Faulstich M; Sieber V
    Bioresour Technol; 2012 Nov; 124():237-44. PubMed ID: 22989651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of extracellular oxidoreduction potential enhanced (R,R)-2,3-butanediol production by Paenibacillus polymyxa CJX518.
    Dai JJ; Cheng JS; Liang YQ; Jiang T; Yuan YJ
    Bioresour Technol; 2014 Sep; 167():433-40. PubMed ID: 25006018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Butanediol production by Aerobacter aerogenes NRRL B199: effects of initial substrate concentration and aeration agitation.
    Sablayrolles JM; Goma G
    Biotechnol Bioeng; 1984 Feb; 26(2):148-55. PubMed ID: 18551701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Engineering of
    Lü C; Ge Y; Cao M; Guo X; Liu P; Gao C; Xu P; Ma C
    Front Bioeng Biotechnol; 2020; 8():125. PubMed ID: 32154242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping.
    Ezeji TC; Qureshi N; Blaschek HP
    Appl Microbiol Biotechnol; 2004 Feb; 63(6):653-8. PubMed ID: 12910325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene.
    Geckil H; Barak Z; Chipman DM; Erenler SO; Webster DA; Stark BC
    Bioprocess Biosyst Eng; 2004 Oct; 26(5):325-30. PubMed ID: 15309606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of specific oxygen uptake rate on Enterobacter aerogenes energetics: carbon and reduction degree balances in batch cultivations.
    Converti A; Perego P; Del Borghi M
    Biotechnol Bioeng; 2003 May; 82(3):370-7. PubMed ID: 12599264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [High-cell density cultivation of recombinant Escherichia coli for production of TRAIL by using a 2-stage feeding strategy].
    Zhang Y; Shen YL; Xia XX; Sun AY; Wei DZ; Zhou JS; Zhang GJ; Wang LH; Jiao BH
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):408-13. PubMed ID: 15971615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetic acid production from lactose by an anaerobic thermophilic coculture immobilized in a fibrous-bed bioreactor.
    Talabardon M; Schwitzguébel JP; Péringer P; Yang ST
    Biotechnol Prog; 2000; 16(6):1008-17. PubMed ID: 11101328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-stage high cell continuous fermentation for high productivity and titer.
    Chang HN; Kim NJ; Kang J; Jeong CM; Choi JD; Fei Q; Kim BJ; Kwon S; Lee SY; Kim J
    Bioprocess Biosyst Eng; 2011 May; 34(4):419-31. PubMed ID: 21127908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An energetic model for oxygen-limited metabolism.
    Beronio PB; Tsao GT
    Biotechnol Bioeng; 1993 Dec; 42(11):1270-6. PubMed ID: 18612954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724.
    Jansen NB; Flickinger MC; Tsao GT
    Biotechnol Bioeng; 1984 Apr; 26(4):362-9. PubMed ID: 18553303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of bioenergetics to modelling the microbial conversion of D-xylose to 2,3-butanediol.
    Jansen NB; Flickinger MC; Tsao GT
    Biotechnol Bioeng; 1984 Jun; 26(6):573-82. PubMed ID: 18553372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into metabolic pathways of the potential biofuel producer, Paenibacillus polymyxa ICGEB2008.
    Adlakha N; Pfau T; Ebenhöh O; Yazdani SS
    Biotechnol Biofuels; 2015; 8():159. PubMed ID: 26413158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R,R-2,3-butanediol.
    Gao J; Xu H; Li QJ; Feng XH; Li S
    Bioresour Technol; 2010 Sep; 101(18):7087-93. PubMed ID: 20452206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.