BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 18584728)

  • 1. Controlling fermentation of lignocellulose hydrolysates in a continuous hollow-fiber reactor using biosensors.
    Mandenius CF
    Biotechnol Bioeng; 1988 Jul; 32(2):123-9. PubMed ID: 18584728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous acetone-butanol-ethanol fermentation using SO2-ethanol-water spent liquor from spruce.
    Survase SA; Sklavounos E; Jurgens G; van Heiningen A; Granström T
    Bioresour Technol; 2011 Dec; 102(23):10996-1002. PubMed ID: 21974878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sugar recovery and fermentability of hemicellulose hydrolysates from steam-exploded softwoods containing bark.
    Boussaid A; Cai Y; Robinson J; Gregg DJ; Nguyen Q; Saddler JN
    Biotechnol Prog; 2001; 17(5):887-92. PubMed ID: 11587580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentation to ethanol of pentose-containing spent sulphite liquor.
    Yu S; Wayman M; Parekh SK
    Biotechnol Bioeng; 1987 Jun; 29(9):1144-50. PubMed ID: 18576569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents.
    Alriksson B; Cavka A; Jönsson LJ
    Bioresour Technol; 2011 Jan; 102(2):1254-63. PubMed ID: 20822900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethanol production from corn cob hydrolysates by Escherichia coli KO11.
    de Carvalho Lima KG; Takahashi CM; Alterthum F
    J Ind Microbiol Biotechnol; 2002 Sep; 29(3):124-8. PubMed ID: 12242633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquefaction of lignocellulose at high-solids concentrations.
    Jørgensen H; Vibe-Pedersen J; Larsen J; Felby C
    Biotechnol Bioeng; 2007 Apr; 96(5):862-70. PubMed ID: 16865734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous bio-catalytic conversion of sugar mixture to acetone-butanol-ethanol by immobilized Clostridium acetobutylicum DSM 792.
    Survase SA; van Heiningen A; Granström T
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2309-16. PubMed ID: 22159612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanolic fermentation of hydrolysates from ammonia fiber expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation.
    Lau MW; Dale BE; Balan V
    Biotechnol Bioeng; 2008 Feb; 99(3):529-39. PubMed ID: 17705225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber.
    Chen KQ; Li J; Ma JF; Jiang M; Wei P; Liu ZM; Ying HJ
    Bioresour Technol; 2011 Jan; 102(2):1704-8. PubMed ID: 20801644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards industrial pentose-fermenting yeast strains.
    Hahn-Hägerdal B; Karhumaa K; Fonseca C; Spencer-Martins I; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2007 Apr; 74(5):937-53. PubMed ID: 17294186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G; Younesi H; Syahidah Ku Ismail K
    Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate.
    Modig T; Almeida JR; Gorwa-Grauslund MF; Lidén G
    Biotechnol Bioeng; 2008 Jun; 100(3):423-9. PubMed ID: 18438882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation.
    Park JH; Hong JY; Jang HC; Oh SG; Kim SH; Yoon JJ; Kim YJ
    Bioresour Technol; 2012 Mar; 108():83-8. PubMed ID: 22261657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol production from selected lignocellulosic hydrolysates by genome shuffled strains of Scheffersomyces stipitis.
    Bajwa PK; Phaenark C; Grant N; Zhang X; Paice M; Martin VJ; Trevors JT; Lee H
    Bioresour Technol; 2011 Nov; 102(21):9965-9. PubMed ID: 21890342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1.
    Georgieva TI; Ahring BK
    Appl Microbiol Biotechnol; 2007 Nov; 77(1):61-8. PubMed ID: 17899073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of ethanol fermentations in membrane cell recycle fermentors.
    Lee CW; Chang HN
    Biotechnol Bioeng; 1987 Jun; 29(9):1105-12. PubMed ID: 18576564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of nutrients on fermentation of pretreated wheat straw at very high dry matter content by Saccharomyces cerevisiae.
    Jørgensen H
    Appl Biochem Biotechnol; 2009 May; 153(1-3):44-57. PubMed ID: 19093228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous fermentation of undetoxified dilute acid lignocellulose hydrolysate by Saccharomyces cerevisiae ATCC 96581 using cell recirculation.
    Brandberg T; Sanandaji N; Gustafsson L; Franzén CJ
    Biotechnol Prog; 2005; 21(4):1093-101. PubMed ID: 16080688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.