These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 18584758)

  • 1. Computer modeling of antibiotic fermentation with on-line product removal.
    Dykstra KH; Li XM; Wang HY
    Biotechnol Bioeng; 1988 Jul; 32(3):356-62. PubMed ID: 18584758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuos IBE fermentation by immobilized growing Clostridium beijerinckii cells in a stirred-tank fermentor.
    Krouwel PG; Groot WJ; Kossen NW
    Biotechnol Bioeng; 1983 Jan; 25(1):281-99. PubMed ID: 18548553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved production of pristinamycin coupled with an adsorbent resin in fermentation by Streptomyces pristinaespiralis.
    Jia B; Jin ZH; Lei YL; Mei LH; Li NH
    Biotechnol Lett; 2006 Nov; 28(22):1811-5. PubMed ID: 16912920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of a new antibacterial antibiotic from a mutated strain of Streptomyces kanamyceticus M27 in submerged fermentation.
    Mukherji B; Chattopadhyay P; Ray L
    Hindustan Antibiot Bull; 2005 Feb-2006 Nov; 47-48(1-4):1-6. PubMed ID: 18697724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel recycle batch immobilized cell bioreactor for propionate production from whey lactose.
    Yang ST; Huang Y; Hong G
    Biotechnol Bioeng; 1995 Mar; 45(5):379-86. PubMed ID: 18623230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback regulation and the intracellular protein profile of Streptomyces griseus in a cycloheximide fermentation.
    Dykstra KH; Wang HY
    Appl Microbiol Biotechnol; 1990 Nov; 34(2):191-7. PubMed ID: 1367499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous acetone-butanol-ethanol (ABE) fermentation using immobilized cells of Clostridium acetobutylicum in a packed bed reactor and integration with product removal by pervaporation.
    Friedl A; Qureshi N; Maddox IS
    Biotechnol Bioeng; 1991 Aug; 38(5):518-27. PubMed ID: 18604810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of ε-poly-L-lysine by Streptomyces sp. using resin-based, in situ product removal.
    Liu S; Wu Q; Zhang J; Mo S
    Biotechnol Lett; 2011 Aug; 33(8):1581-5. PubMed ID: 21720848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibiotic production by Streptomyces aureofaciens using self-cycling fermentation.
    Zenaitis MG; Cooper DG
    Biotechnol Bioeng; 1994 Dec; 44(11):1331-6. PubMed ID: 18618645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periodic operation of immobilized cell systems: analysis.
    Sayles GD; Ollis DF
    Biotechnol Bioeng; 1989 Jun; 34(2):160-70. PubMed ID: 18588089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An immobilized cell reactor with simultaneous product separation. I. Reactor design and analysis.
    Dale MC; Okos MR; Wankat PC
    Biotechnol Bioeng; 1985 Jul; 27(7):932-42. PubMed ID: 18553762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proposed biparticle fluidized-bed for lactic acid fermentation and simultaneous adsorption.
    Davison BH; Scott CD
    Biotechnol Bioeng; 1992 Feb; 39(3):365-8. PubMed ID: 18600955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Affinity-based in situ product removal coupled with co-immobilization of oily substrate and filamentous fungus.
    Dukler A; Freeman A
    J Mol Recognit; 1998; 11(1-6):231-5. PubMed ID: 10076845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization of oxytetracycline from fermentation waste liquor: influence of biopolymer impurities.
    Li SZ; Li XY; Wang D
    J Colloid Interface Sci; 2004 Nov; 279(1):100-8. PubMed ID: 15380417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved production of teicoplanin using adsorbent resin in fermentations.
    Lee JC; Park HR; Park DJ; Lee HB; Kim YB; Kim CJ
    Lett Appl Microbiol; 2003; 37(3):196-200. PubMed ID: 12904219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic modeling of immobilized cell reactor: application to ethanol fermentation.
    Nakasaki K; Murai T; Akiyama T
    Biotechnol Bioeng; 1989 Apr; 33(10):1317-23. PubMed ID: 18587866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of dextransucrase and dextran by Leuconostoc mesenteroides immobilized in calcium-alginate beads: II. Semicontinuous fed-batch fermentations.
    El-Sayed AH; Mahmoud WM; Coughlin RW
    Biotechnol Bioeng; 1990 Aug; 36(4):346-53. PubMed ID: 18595088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An innovative consecutive batch fermentation process for very high gravity ethanol fermentation with self-flocculating yeast.
    Li F; Zhao XQ; Ge XM; Bai FW
    Appl Microbiol Biotechnol; 2009 Oct; 84(6):1079-86. PubMed ID: 19475405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of dextransucrase by Leuconostoc mesenteroides immobilized in calcium-alginate beads: I. Batch and fed-batch fermentations.
    El-Sayed AH; Mahmoud WM; Coughlin RW
    Biotechnol Bioeng; 1990 Aug; 36(4):338-45. PubMed ID: 18595087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactate production in an integrated process configuration: reducing cell adsorption by shielding of adsorbent.
    Senthuran A; Senthuran V; Hatti-Kaul R; Mattiasson B
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):658-63. PubMed ID: 15179528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.