BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 18585066)

  • 41. Genetic analysis of biosurfactant production in Ustilago maydis.
    Hewald S; Josephs K; Bölker M
    Appl Environ Microbiol; 2005 Jun; 71(6):3033-40. PubMed ID: 15932999
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mining the genome of the biotrophic fungal pathogen Ustilago maydis.
    Kronstad JW
    Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S1-2. PubMed ID: 18567513
    [No Abstract]   [Full Text] [Related]  

  • 43. Towards understanding the extreme radiation resistance of Ustilago maydis.
    Holloman WK; Schirawski J; Holliday R
    Trends Microbiol; 2007 Dec; 15(12):525-9. PubMed ID: 17997098
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The UMAG_00031 gene from Ustilago maydis encodes a putative membrane protein involved in pH control and morphogenesis.
    Cervantes-Montelongo JA; Silva-Martínez GA; Pliego-Arreaga R; Guevara-Olvera L; Ruiz-Herrera J
    Arch Microbiol; 2020 Oct; 202(8):2221-2232. PubMed ID: 32529509
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calcineurin is an antagonist to PKA protein phosphorylation required for postmating filamentation and virulence, while PP2A is required for viability in Ustilago maydis.
    Egan JD; García-Pedrajas MD; Andrews DL; Gold SE
    Mol Plant Microbe Interact; 2009 Oct; 22(10):1293-301. PubMed ID: 19737102
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The a2 mating-type-locus gene lga2 of Ustilago maydis interferes with mitochondrial dynamics and fusion, partially in dependence on a Dnm1-like fission component.
    Mahlert M; Vogler C; Stelter K; Hause G; Basse CW
    J Cell Sci; 2009 Jul; 122(Pt 14):2402-12. PubMed ID: 19531588
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The interplay between transport and metabolism in fungal itaconic acid production.
    Hosseinpour Tehrani H; Geiser E; Engel M; Hartmann SK; Hossain AH; Punt PJ; Blank LM; Wierckx N
    Fungal Genet Biol; 2019 Apr; 125():45-52. PubMed ID: 30703558
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Insight into the biochemical and cell biological function of an intrinsically unstructured heat shock protein, Hsp12 of Ustilago maydis.
    Mitra A; Bhakta K; Kar A; Roy A; Mohid SA; Ghosh A; Ghosh A
    Mol Plant Pathol; 2023 Sep; 24(9):1063-1077. PubMed ID: 37434353
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sex in smut fungi: Structure, function and evolution of mating-type complexes.
    Bakkeren G; Kämper J; Schirawski J
    Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S15-21. PubMed ID: 18501648
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An Unconventional Melanin Biosynthesis Pathway in Ustilago maydis.
    Reyes-Fernández EZ; Shi YM; Grün P; Bode HB; Bölker M
    Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33218994
    [No Abstract]   [Full Text] [Related]  

  • 51. A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis.
    Teichmann B; Linne U; Hewald S; Marahiel MA; Bölker M
    Mol Microbiol; 2007 Oct; 66(2):525-33. PubMed ID: 17850255
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The transition from a phytopathogenic smut ancestor to an anamorphic biocontrol agent deciphered by comparative whole-genome analysis.
    Lefebvre F; Joly DL; Labbé C; Teichmann B; Linning R; Belzile F; Bakkeren G; Bélanger RR
    Plant Cell; 2013 Jun; 25(6):1946-59. PubMed ID: 23800965
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activation of the ustilagic acid biosynthesis gene cluster in Ustilago maydis by the C2H2 zinc finger transcription factor Rua1.
    Teichmann B; Liu L; Schink KO; Bölker M
    Appl Environ Microbiol; 2010 Apr; 76(8):2633-40. PubMed ID: 20173069
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The regulation of different metabolic pathways through the Pal/Rim pathway in Ustilago maydis.
    Fonseca-García C; León-Ramírez CG; Ruiz-Herrera J
    FEMS Yeast Res; 2012 Aug; 12(5):547-56. PubMed ID: 22443138
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of the regulation of the Ustilago maydis proteome by dimorphism, pH or MAPK and GCN5 genes.
    Martínez-Salgado JL; León-Ramírez CG; Pacheco AB; Ruiz-Herrera J; de la Rosa AP
    J Proteomics; 2013 Feb; 79():251-62. PubMed ID: 23305952
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate.
    Geiser E; Przybilla SK; Friedrich A; Buckel W; Wierckx N; Blank LM; Bölker M
    Microb Biotechnol; 2016 Jan; 9(1):116-26. PubMed ID: 26639528
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Zinc uptake in the Basidiomycota: Characterization of zinc transporters in
    Martha-Paz AM; Eide D; Mendoza-Cózatl D; Castro-Guerrero NA; Aréchiga-Carvajal ET
    Mol Membr Biol; 2019 Dec; 35(1):39-50. PubMed ID: 31617434
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of mitochondrial genetic diversity of Ustilago maydis in Mexico.
    Jiménez-Becerril MF; Hernández-Delgado S; Solís-Oba M; González Prieto JM
    Mitochondrial DNA A DNA Mapp Seq Anal; 2018 Jan; 29(1):1-8. PubMed ID: 27728988
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heparin-mediated transformation of Escherichia coli with Ustilago maydis DNA.
    Bauchwitz RP
    Biotechniques; 1991 Jun; 10(6):710-8. PubMed ID: 1878203
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of genes potentially involved in the biocontrol activity of Pseudozyma flocculosa.
    Marchand G; Rémus-Borel W; Chain F; Hammami W; Belzile F; Bélanger RR
    Phytopathology; 2009 Oct; 99(10):1142-9. PubMed ID: 19740027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.