BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18585087)

  • 1. Polar residues in a conserved motif spanning helices 1 and 2 are functionally important in the SulP transporter family.
    Leves FP; Tierney ML; Howitt SM
    Int J Biochem Cell Biol; 2008; 40(11):2596-605. PubMed ID: 18585087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between charged amino acid residues within transmembrane helices in the sulfate transporter SHST1.
    Shelden MC; Loughlin P; Tierney ML; Howitt SM
    Biochemistry; 2003 Nov; 42(44):12941-9. PubMed ID: 14596609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of a model member of the SulP transporter family.
    Loughlin P; Shelden MC; Tierney ML; Howitt SM
    Cell Biochem Biophys; 2002; 36(2-3):183-90. PubMed ID: 12139404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the cytosolic portion of the motor protein prestin and functional role of the STAS domain in SLC26/SulP anion transporters.
    Pasqualetto E; Aiello R; Gesiot L; Bonetto G; Bellanda M; Battistutta R
    J Mol Biol; 2010 Jul; 400(3):448-62. PubMed ID: 20471983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane topology of the cyanobacterial bicarbonate transporter, BicA, a member of the SulP (SLC26A) family.
    Shelden MC; Howitt SM; Price GD
    Mol Membr Biol; 2010 Jan; 27(1):12-22. PubMed ID: 19951076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling and mutational evidence identify the substrate binding site and functional elements in APC amino acid transporters.
    Vangelatos I; Vlachakis D; Sophianopoulou V; Diallinas G
    Mol Membr Biol; 2009 Aug; 26(5):356-70. PubMed ID: 19670073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molybdate transport through the plant sulfate transporter SHST1.
    Fitzpatrick KL; Tyerman SD; Kaiser BN
    FEBS Lett; 2008 Apr; 582(10):1508-13. PubMed ID: 18396170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proline residues in two tightly coupled helices of the sulphate transporter, SHST1, are important for sulphate transport.
    Shelden MC; Loughlin P; Tierney ML; Howitt SM
    Biochem J; 2001 Jun; 356(Pt 2):589-94. PubMed ID: 11368789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate transport in Aspergillus nidulans: a novel gene encoding alternative sulfate transporter.
    Piłsyk S; Natorff R; Sieńko M; Paszewski A
    Fungal Genet Biol; 2007 Aug; 44(8):715-25. PubMed ID: 17223367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function analysis of the highly conserved charged residues of the membrane protein FT1, the main folic acid transporter of the protozoan parasite Leishmania.
    Dridi L; Haimeur A; Ouellette M
    Biochem Pharmacol; 2010 Jan; 79(1):30-8. PubMed ID: 19660435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfate transport by SLC26 transporters.
    Markovich D
    Novartis Found Symp; 2006; 273():42-51; discussion 51-8, 261-4. PubMed ID: 17120760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate preference is altered by mutations in the fifth transmembrane domain of Ptr2p, the di/tri-peptide transporter of Saccharomyces cerevisiae.
    Hauser M; Kauffman S; Naider F; Becker JM
    Mol Membr Biol; 2005; 22(3):215-27. PubMed ID: 16096264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional importance of GGXG sequence motifs in putative reentrant loops of 2HCT and ESS transport proteins.
    Dobrowolski A; Lolkema JS
    Biochemistry; 2009 Aug; 48(31):7448-56. PubMed ID: 19594131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discontinuous membrane helices in transport proteins and their correlation with function.
    Screpanti E; Hunte C
    J Struct Biol; 2007 Aug; 159(2):261-7. PubMed ID: 17350860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfate permeasesphylogenetic diversity of sulfate transport.
    Piłsyk S; Paszewski A
    Acta Biochim Pol; 2009; 56(3):375-84. PubMed ID: 19724780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaf developmental stage affects sulfate depletion and specific sulfate transporter expression during sulfur deprivation in Brassica napus L.
    Parmar S; Buchner P; Hawkesford MJ
    Plant Biol (Stuttg); 2007 Sep; 9(5):647-53. PubMed ID: 17853364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbonic anhydrases fused to anion transporters of the SulP family: evidence for a novel type of bicarbonate transporter.
    Felce J; Saier MH
    J Mol Microbiol Biotechnol; 2004; 8(3):169-76. PubMed ID: 16088218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Satisfaction of hydrogen-bonding potential influences the conservation of polar sidechains.
    Worth CL; Blundell TL
    Proteins; 2009 May; 75(2):413-29. PubMed ID: 18837037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis and prediction of helix-helix interactions in membrane channels and transporters.
    Hildebrand PW; Lorenzen S; Goede A; Preissner R
    Proteins; 2006 Jul; 64(1):253-62. PubMed ID: 16555307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular analysis of human solute carrier SLC26 anion transporter disease-causing mutations using 3-dimensional homology modeling.
    Rapp C; Bai X; Reithmeier RAF
    Biochim Biophys Acta Biomembr; 2017 Dec; 1859(12):2420-2434. PubMed ID: 28941661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.