BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1189 related articles for article (PubMed ID: 18585215)

  • 21. Extraction and preconcentration technique for triazole pesticides from cow milk using dispersive liquid-liquid microextraction followed by GC-FID and GC-MS determinations.
    Farajzadeh MA; Djozan D; Mogaddam MR; Bamorowat M
    J Sep Sci; 2011 Jun; 34(11):1309-16. PubMed ID: 21491595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction for the determination of organosulfur pesticides in environmental and beverage samples by gas chromatography with flame photometric detection.
    Xiong J; Hu B
    J Chromatogr A; 2008 Jun; 1193(1-2):7-18. PubMed ID: 18439612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a new extraction method based on counter current salting-out homogenous liquid-liquid extraction followed by dispersive liquid-liquid microextraction: Application for the extraction and preconcentration of widely used pesticides from fruit juices.
    Farajzadeh MA; Feriduni B; Mogaddam MR
    Talanta; 2016 Jan; 146():772-9. PubMed ID: 26695329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of organochlorine pesticides in water samples by dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry.
    Cortada C; Vidal L; Pastor R; Santiago N; Canals A
    Anal Chim Acta; 2009 Sep; 649(2):218-21. PubMed ID: 19699397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultra-preconcentration and determination of thirteen organophosphorus pesticides in water samples using solid-phase extraction followed by dispersive liquid-liquid microextraction and gas chromatography with flame photometric detection.
    Samadi S; Sereshti H; Assadi Y
    J Chromatogr A; 2012 Jan; 1219():61-5. PubMed ID: 22153286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hollow fiber-based liquid phase microextraction combined with high-performance liquid chromatography for extraction and determination of some antidepressant drugs in biological fluids.
    Esrafili A; Yamini Y; Shariati S
    Anal Chim Acta; 2007 Dec; 604(2):127-33. PubMed ID: 17996533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of valproic acid in human serum and pharmaceutical preparations by headspace liquid-phase microextraction gas chromatography-flame ionization detection without prior derivatization.
    Shahdousti P; Mohammadi A; Alizadeh N
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 May; 850(1-2):128-33. PubMed ID: 17157566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of dispersive liquid-liquid microextraction combined with gas chromatography for the analysis of nitroaromatic compounds in water.
    Ebrahimzadeh H; Yamini Y; Kamarei F
    Talanta; 2009 Oct; 79(5):1472-7. PubMed ID: 19635386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-phase hollow fiber microextraction based on two immiscible organic solvents for determination of tricyclic antidepressant drugs: comparison with conventional three-phase hollow fiber microextraction.
    Ghambarian M; Yamini Y; Esrafili A
    J Chromatogr A; 2012 Jan; 1222():5-12. PubMed ID: 22197253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solid-phase extraction combined with dispersive liquid-liquid microextraction for the determination for polybrominated diphenyl ethers in different environmental matrices.
    Liu X; Li J; Zhao Z; Zhang W; Lin K; Huang C; Wang X
    J Chromatogr A; 2009 Mar; 1216(12):2220-6. PubMed ID: 19168180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dispersive liquid-liquid microextraction followed by reversed phase HPLC for the determination of decabrominated diphenyl ether in natural water.
    Li Y; Hu J; Liu X; Fu L; Zhang X; Wang X
    J Sep Sci; 2008 Jul; 31(13):2371-6. PubMed ID: 18646259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extraction and determination of some psychotropic drugs in urine samples using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.
    Xiong C; Ruan J; Cai Y; Tang Y
    J Pharm Biomed Anal; 2009 Feb; 49(2):572-8. PubMed ID: 19135820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dispersive liquid-liquid microextraction method based on solidification of floating organic drop for extraction of organochlorine pesticides in water samples.
    Leong MI; Huang SD
    J Chromatogr A; 2009 Nov; 1216(45):7645-50. PubMed ID: 19766234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dispersive liquid-liquid microextraction followed by reversed phase-high performance liquid chromatography for the determination of polybrominated diphenyl ethers at trace levels in landfill leachate and environmental water samples.
    Li Y; Wei G; Hu J; Liu X; Zhao X; Wang X
    Anal Chim Acta; 2008 May; 615(1):96-103. PubMed ID: 18440368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples.
    Liu Y; Zhao E; Zhu W; Gao H; Zhou Z
    J Chromatogr A; 2009 Feb; 1216(6):885-91. PubMed ID: 19118833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dispersive liquid-liquid microextraction combined with semi-automated in-syringe back extraction as a new approach for the sample preparation of ionizable organic compounds prior to liquid chromatography.
    Melwanki MB; Fuh MR
    J Chromatogr A; 2008 Jul; 1198-1199():1-6. PubMed ID: 18513730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dispersive liquid-liquid microextraction followed by gas chromatography-electron capture detection for determination of polychlorinated biphenyls in fish.
    Hu J; Li Y; Zhang W; Wang H; Huang C; Zhang M; Wang X
    J Sep Sci; 2009 Jun; 32(12):2103-8. PubMed ID: 19548213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a dispersive liquid-liquid microextraction method for the determination of polychlorinated biphenyls in water.
    Rezaei F; Bidari A; Birjandi AP; Milani Hosseini MR; Assadi Y
    J Hazard Mater; 2008 Oct; 158(2-3):621-7. PubMed ID: 18359561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous derivatization and extraction of anilines in waste water with dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometric detection.
    Chiang JS; Huang SD
    Talanta; 2008 Mar; 75(1):70-5. PubMed ID: 18371849
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrasound-assisted dispersive liquid-liquid microextraction coupled with capillary gas chromatography for simultaneous analysis of nine pyrethroids in domestic wastewaters.
    Yan H; Du J; Zhang X; Yang G; Row KH; Lv Y
    J Sep Sci; 2010 Jun; 33(12):1829-35. PubMed ID: 20491053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 60.