These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18585288)

  • 1. Sodium hydroxide as pretreatment and fluorosurfactant-capped gold nanoparticles as sensor for the highly selective detection of cysteine.
    Wu HP; Huang CC; Cheng TL; Tseng WL
    Talanta; 2008 Jul; 76(2):347-52. PubMed ID: 18585288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of fluorosurfactant-modified gold nanoparticles in selective detection of homocysteine thiolactone: remover and sensor.
    Huang CC; Tseng WL
    Anal Chem; 2008 Aug; 80(16):6345-50. PubMed ID: 18613648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent sensing of homocysteine in urine: using fluorosurfactant-capped gold nanoparticles and o-Phthaldialdehyde.
    Lin JH; Chang CW; Tseng WL
    Analyst; 2010 Jan; 135(1):104-10. PubMed ID: 20024188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific detection of cysteine and homocysteine in biological fluids by tuning the pH values of fluorosurfactant-stabilized gold colloidal solution.
    Xiao Q; Shang F; Xu X; Li Q; Lu C; Lin JM
    Biosens Bioelectron; 2011 Dec; 30(1):211-5. PubMed ID: 21978483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonionic surfactant-capped gold nanoparticles for selective enrichment of aminothiols prior to CE with UV absorption detection.
    Li MD; Cheng TL; Tseng WL
    Electrophoresis; 2009 Jan; 30(2):388-95. PubMed ID: 19204952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific postcolumn detection method for HPLC assay of homocysteine based on aggregation of fluorosurfactant-capped gold nanoparticles.
    Lu C; Zu Y; Yam VW
    Anal Chem; 2007 Jan; 79(2):666-72. PubMed ID: 17222035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective enrichment of aminothiols using polysorbate 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence.
    Shen CC; Tseng WL; Hsieh MM
    J Chromatogr A; 2009 Jan; 1216(2):288-93. PubMed ID: 19058808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly selective detection of histidine using o-phthaldialdehyde derivatization after the removal of aminothiols through Tween 20-capped gold nanoparticles.
    Huang CC; Tseng WL
    Analyst; 2009 Aug; 134(8):1699-705. PubMed ID: 20448940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand exchange effects in gold nanoparticle assembly induced by oxidative stress biomarkers: homocysteine and cysteine.
    Stobiecka M; Deeb J; Hepel M
    Biophys Chem; 2010 Feb; 146(2-3):98-107. PubMed ID: 19944518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate.
    Yu CJ; Tseng WL
    Langmuir; 2008 Nov; 24(21):12717-22. PubMed ID: 18839969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nile Red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry.
    Huang YF; Chang HT
    Anal Chem; 2006 Mar; 78(5):1485-93. PubMed ID: 16503598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorosurfactant-prepared triangular gold nanoparticles as postcolumn chemiluminescence reagents for high-performance liquid chromatography assay of low molecular weight aminothiols in biological fluids.
    Li Q; Shang F; Lu C; Zheng Z; Lin JM
    J Chromatogr A; 2011 Dec; 1218(50):9064-70. PubMed ID: 22055524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorimetric detection of cephradine in pharmaceutical formulations via fluorosurfactant-capped gold nanoparticles.
    Lu C; Zhang N; Li J; Li Q
    Talanta; 2010 Apr; 81(1-2):698-702. PubMed ID: 20188984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoparticle extraction followed by o-phthaldialdehyde derivatization for fluorescence sensing of different forms of homocysteine in plasma.
    Lai YJ; Tseng WL
    Talanta; 2012 Mar; 91():103-9. PubMed ID: 22365687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric assay for S-adenosylhomocysteine hydrolase activity and inhibition using fluorosurfactant-capped gold nanoparticles.
    Lin JH; Chang CW; Wu ZH; Tseng WL
    Anal Chem; 2010 Nov; 82(21):8775-9. PubMed ID: 20945873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from hydrogen peroxide-hydroxide and hydrogen peroxide-bicarbonate in presence of cobalt(II).
    Li J; Li Q; Lu C; Zhao L; Lin JM
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):700-5. PubMed ID: 21186138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols.
    Xu H; Wang Y; Huang X; Li Y; Zhang H; Zhong X
    Analyst; 2012 Feb; 137(4):924-31. PubMed ID: 22179771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon resonance additivity of gold nanoparticles for colorimetric identification of cysteine and homocysteine in biological fluids.
    Gao H; Shen W; Lu C; Liang H; Yuan Q
    Talanta; 2013 Oct; 115():1-5. PubMed ID: 24054554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance liquid chromatography assay of cysteine and homocysteine using fluorosurfactant-functionalized gold nanoparticles as postcolumn resonance light scattering reagents.
    Xiao Q; Gao H; Yuan Q; Lu C; Lin JM
    J Chromatogr A; 2013 Jan; 1274():145-50. PubMed ID: 23290357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homocysteine-mediated reactivity and assembly of gold nanoparticles.
    Lim II; Ip W; Crew E; Njoki PN; Mott D; Zhong CJ; Pan Y; Zhou S
    Langmuir; 2007 Jan; 23(2):826-33. PubMed ID: 17209640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.