These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 18585293)
1. Wavelet neural networks to resolve the overlapping signal in the voltammetric determination of phenolic compounds. Gutiérrez JM; Gutés A; Céspedes F; del Valle M; Muñoz R Talanta; 2008 Jul; 76(2):373-81. PubMed ID: 18585293 [TBL] [Abstract][Full Text] [Related]
2. Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis. Gutés A; Céspedes F; Alegret S; del Valle M Biosens Bioelectron; 2005 Feb; 20(8):1668-73. PubMed ID: 15626626 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous determination of phenolic compounds by means of an automated voltammetric "electronic tongue". Gutés A; Ibáñez AB; Céspedes F; Alegret S; del Valle M Anal Bioanal Chem; 2005 May; 382(2):471-6. PubMed ID: 15895214 [TBL] [Abstract][Full Text] [Related]
4. Resolution of phenolic antioxidant mixtures employing a voltammetric bio-electronic tongue. Cetó X; Céspedes F; Pividori MI; Gutiérrez JM; del Valle M Analyst; 2012 Jan; 137(2):349-56. PubMed ID: 22102984 [TBL] [Abstract][Full Text] [Related]
5. Sequential injection system with higher dimensional electrochemical sensor signals Part 1. Voltammetric e-tongue for the determination of oxidizable compounds. Gutés A; Céspedes F; Alegret S; Del Valle M Talanta; 2005 Jun; 66(5):1187-96. PubMed ID: 18970108 [TBL] [Abstract][Full Text] [Related]
6. Automated electronic tongue based on potentiometric sensors for the determination of a trinary anionic surfactant mixture. Cortina M; Ecker C; Calvo D; del Valle M J Pharm Biomed Anal; 2008 Jan; 46(2):213-8. PubMed ID: 17964750 [TBL] [Abstract][Full Text] [Related]
7. Highly stable electrochemical oxidation of phenolic compounds at carbon ionic liquid electrode. Safavi A; Maleki N; Tajabadi F Analyst; 2007 Jan; 132(1):54-8. PubMed ID: 17180180 [TBL] [Abstract][Full Text] [Related]
8. Voltammetric electronic tongue to identify Brett character in wines. On-site quantification of its ethylphenol metabolites. González-Calabuig A; Del Valle M Talanta; 2018 Mar; 179():70-74. PubMed ID: 29310296 [TBL] [Abstract][Full Text] [Related]
9. Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor. Pérez López B; Merkoçi A Analyst; 2009 Jan; 134(1):60-4. PubMed ID: 19082175 [TBL] [Abstract][Full Text] [Related]
10. Application of principal component-artificial neural network models for simultaneous determination of phenolic compounds by a kinetic spectrophotometric method. Hasani M; Moloudi M J Hazard Mater; 2008 Aug; 157(1):161-9. PubMed ID: 18272286 [TBL] [Abstract][Full Text] [Related]
11. Quantification of phenolic compounds in olive oil mill wastewater by artificial neural network/laccase biosensor. Torrecilla JS; Mena ML; Yáñez-Sedeño P; García J J Agric Food Chem; 2007 Sep; 55(18):7418-26. PubMed ID: 17685539 [TBL] [Abstract][Full Text] [Related]
12. Flow-injection-electrochemical oxidation fluorimetry for determination of methotrexate. Chen S; Zhang Z; He D; Hu Y; Zheng H; He C Luminescence; 2007; 22(4):338-42. PubMed ID: 17471467 [TBL] [Abstract][Full Text] [Related]
13. Indirect detection of substituted phenols and cannabis based on the electrochemical adaptation of the Gibbs reaction. Lowe ER; Banks CE; Compton RG Anal Bioanal Chem; 2005 Oct; 383(3):523-31. PubMed ID: 16136302 [TBL] [Abstract][Full Text] [Related]
14. Determination of total polyphenol index in wines employing a voltammetric electronic tongue. Cetó X; Gutiérrez JM; Gutiérrez M; Céspedes F; Capdevila J; Mínguez S; Jiménez-Jorquera C; del Valle M Anal Chim Acta; 2012 Jun; 732():172-9. PubMed ID: 22688049 [TBL] [Abstract][Full Text] [Related]
15. Application of principal component-wavelet neural network in spectrophotometric determination of acidity constants of 4-(2-thiazolylazo)-resorcinol. Benvidi A; Heidari F; Tabaraki R; Mazloum-Ardakani M Spectrochim Acta A Mol Biomol Spectrosc; 2011 May; 78(5):1380-5. PubMed ID: 21354857 [TBL] [Abstract][Full Text] [Related]
16. Determination of phenolic compounds and hydroxymethylfurfural in meads using high performance liquid chromatography with coulometric-array and UV detection. Kahoun D; Rezková S; Veskrnová K; Královský J; Holcapek M J Chromatogr A; 2008 Aug; 1202(1):19-33. PubMed ID: 18620360 [TBL] [Abstract][Full Text] [Related]
17. Resolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy and artificial neural networks. Muñoz-Berbel X; Vigués N; Mas J; Del Valle M; Muñoz FJ; Cortina-Puig M Biosens Bioelectron; 2008 Dec; 24(4):964-8. PubMed ID: 18783936 [TBL] [Abstract][Full Text] [Related]
18. The use of Artificial Neural Networks for the selective detection of two organophosphate insecticides: chlorpyrifos and chlorfenvinfos. Istamboulie G; Cortina-Puig M; Marty JL; Noguer T Talanta; 2009 Jul; 79(2):507-11. PubMed ID: 19559912 [TBL] [Abstract][Full Text] [Related]
19. The effects of alkyl sulfates on the analysis of phenolic compounds by microchip capillary electrophoresis with pulsed amperometric detection. Ding Y; Mora MF; Merrill GN; Garcia CD Analyst; 2007 Oct; 132(10):997-1004. PubMed ID: 17893803 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous kinetic determination of thiocyanate and sulfide using eigenvalue ranking and correlation ranking in principal component-wavelet neural network. Ensafi AA; Khayamian T; Tabaraki R Talanta; 2007 Mar; 71(5):2021-8. PubMed ID: 19071558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]