BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 18585440)

  • 1. Expectancy for food or expectancy for chocolate reveals timing systems for metabolism and reward.
    Angeles-Castellanos M; Salgado-Delgado R; Rodríguez K; Buijs RM; Escobar C
    Neuroscience; 2008 Jul; 155(1):297-307. PubMed ID: 18585440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restricted feeding schedules phase shift daily rhythms of c-Fos and protein Per1 immunoreactivity in corticolimbic regions in rats.
    Angeles-Castellanos M; Mendoza J; Escobar C
    Neuroscience; 2007 Jan; 144(1):344-55. PubMed ID: 17045749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The suprachiasmatic nucleus participates in food entrainment: a lesion study.
    Angeles-Castellanos M; Salgado-Delgado R; Rodriguez K; Buijs RM; Escobar C
    Neuroscience; 2010 Feb; 165(4):1115-26. PubMed ID: 20004704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian rhythms of PERIOD1 expression in the dorsomedial hypothalamic nucleus in the absence of entrained food-anticipatory activity rhythms in rats.
    Verwey M; Lam GY; Amir S
    Eur J Neurosci; 2009 Jun; 29(11):2217-22. PubMed ID: 19490091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entrainment by a palatable meal induces food-anticipatory activity and c-Fos expression in reward-related areas of the brain.
    Mendoza J; Angeles-Castellanos M; Escobar C
    Neuroscience; 2005; 133(1):293-303. PubMed ID: 15893651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unpredictable feeding schedules unmask a system for daily resetting of behavioural and metabolic food entrainment.
    Escobar C; Martínez-Merlos MT; Angeles-Castellanos M; del Carmen Miñana M; Buijs RM
    Eur J Neurosci; 2007 Nov; 26(10):2804-14. PubMed ID: 18001277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progressive anticipation in behavior and brain activation of rats exposed to scheduled daily palatable food.
    Blancas A; González-García SD; Rodríguez K; Escobar C
    Neuroscience; 2014 Dec; 281():44-53. PubMed ID: 25255933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bidirectional interactions between the circadian and reward systems: is restricted food access a unique zeitgeber?
    Webb IC; Baltazar RM; Lehman MN; Coolen LM
    Eur J Neurosci; 2009 Nov; 30(9):1739-48. PubMed ID: 19878278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleus-specific effects of meal duration on daily profiles of Period1 and Period2 protein expression in rats housed under restricted feeding.
    Verwey M; Amir S
    Neuroscience; 2011 Sep; 192():304-11. PubMed ID: 21767615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light.
    Nováková M; Polidarová L; Sládek M; Sumová A
    Neuroscience; 2011 Dec; 197():65-71. PubMed ID: 21952132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feeding entrainment of food-anticipatory activity and per1 expression in the brain and liver of zebrafish under different lighting and feeding conditions.
    López-Olmeda JF; Tartaglione EV; de la Iglesia HO; Sánchez-Vázquez FJ
    Chronobiol Int; 2010 Aug; 27(7):1380-400. PubMed ID: 20795882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Food-reward signalling in the suprachiasmatic clock.
    Mendoza J; Clesse D; Pévet P; Challet E
    J Neurochem; 2010 Mar; 112(6):1489-99. PubMed ID: 20067576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice.
    Moriya T; Aida R; Kudo T; Akiyama M; Doi M; Hayasaka N; Nakahata N; Mistlberger R; Okamura H; Shibata S
    Eur J Neurosci; 2009 Apr; 29(7):1447-60. PubMed ID: 19519629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A daily palatable meal without food deprivation entrains the suprachiasmatic nucleus of rats.
    Mendoza J; Angeles-Castellanos M; Escobar C
    Eur J Neurosci; 2005 Dec; 22(11):2855-62. PubMed ID: 16324120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential regulation of the expression of Period2 protein in the limbic forebrain and dorsomedial hypothalamus by daily limited access to highly palatable food in food-deprived and free-fed rats.
    Verwey M; Khoja Z; Stewart J; Amir S
    Neuroscience; 2007 Jun; 147(2):277-85. PubMed ID: 17544223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Region-specific modulation of PER2 expression in the limbic forebrain and hypothalamus by nighttime restricted feeding in rats.
    Verwey M; Khoja Z; Stewart J; Amir S
    Neurosci Lett; 2008 Jul; 440(1):54-8. PubMed ID: 18541376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential role of the accumbens Shell and Core subterritories in food-entrained rhythms of rats.
    Mendoza J; Angeles-Castellanos M; Escobar C
    Behav Brain Res; 2005 Mar; 158(1):133-42. PubMed ID: 15680201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sucrose modifies c-fos mRNA expression in the brain of rats maintained on feeding schedules.
    Mitra A; Lenglos C; Martin J; Mbende N; Gagné A; Timofeeva E
    Neuroscience; 2011 Sep; 192():459-74. PubMed ID: 21718761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of a restricted feeding schedule on clock-gene expression in the hypothalamus of the rat.
    Minana-Solis MC; Angeles-Castellanos M; Feillet C; Pevet P; Challet E; Escobar C
    Chronobiol Int; 2009 Jul; 26(5):808-20. PubMed ID: 19637044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurobiology of food anticipatory circadian rhythms.
    Mistlberger RE
    Physiol Behav; 2011 Sep; 104(4):535-45. PubMed ID: 21527266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.