BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 18585681)

  • 1. Cognition-enhancing doses of methylphenidate preferentially increase prefrontal cortex neuronal responsiveness.
    Devilbiss DM; Berridge CW
    Biol Psychiatry; 2008 Oct; 64(7):626-35. PubMed ID: 18585681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function.
    Berridge CW; Devilbiss DM; Andrzejewski ME; Arnsten AF; Kelley AE; Schmeichel B; Hamilton C; Spencer RC
    Biol Psychiatry; 2006 Nov; 60(10):1111-20. PubMed ID: 16806100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Psychostimulants as cognitive enhancers: the prefrontal cortex, catecholamines, and attention-deficit/hyperactivity disorder.
    Berridge CW; Devilbiss DM
    Biol Psychiatry; 2011 Jun; 69(12):e101-11. PubMed ID: 20875636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Psychostimulants act within the prefrontal cortex to improve cognitive function.
    Spencer RC; Klein RM; Berridge CW
    Biol Psychiatry; 2012 Aug; 72(3):221-7. PubMed ID: 22209638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-dose methylphenidate actions on tonic and phasic locus coeruleus discharge.
    Devilbiss DM; Berridge CW
    J Pharmacol Exp Ther; 2006 Dec; 319(3):1327-35. PubMed ID: 16980569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cognition-enhancing and cognition-impairing doses of psychostimulants exert opposing actions on frontostriatal neural coding of delay in working memory.
    Spencer RC; Martin AJ; Devilbiss DM; Berridge CW
    Neuropsychopharmacology; 2024 Apr; 49(5):837-844. PubMed ID: 37741905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oral Administration of Methylphenidate (Ritalin) Affects Dopamine Release Differentially Between the Prefrontal Cortex and Striatum: A Microdialysis Study in the Monkey.
    Kodama T; Kojima T; Honda Y; Hosokawa T; Tsutsui KI; Watanabe M
    J Neurosci; 2017 Mar; 37(9):2387-2394. PubMed ID: 28154152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptor and circuit mechanisms underlying differential procognitive actions of psychostimulants.
    Spencer RC; Berridge CW
    Neuropsychopharmacology; 2019 Sep; 44(10):1820-1827. PubMed ID: 30683912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylphenidate affects task-switching and neural signaling in non-human primates.
    Rajala AZ; Populin LC; Jenison RL
    Psychopharmacology (Berl); 2020 May; 237(5):1533-1543. PubMed ID: 32067136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental strategies for investigating psychostimulant drug actions and prefrontal cortical function in ADHD and related attention disorders.
    Agster KL; Clark BD; Gao WJ; Shumsky JS; Wang HX; Berridge CW; Waterhouse BD
    Anat Rec (Hoboken); 2011 Oct; 294(10):1698-712. PubMed ID: 21901844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effects of Methylphenidate (Ritalin) on the Neurophysiology of the Monkey Caudal Prefrontal Cortex.
    Tremblay S; Pieper F; Sachs A; Joober R; Martinez-Trujillo J
    eNeuro; 2019; 6(1):. PubMed ID: 30847388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential sensitivity to psychostimulants across prefrontal cognitive tasks: differential involvement of noradrenergic α₁ - and α₂-receptors.
    Berridge CW; Shumsky JS; Andrzejewski ME; McGaughy JA; Spencer RC; Devilbiss DM; Waterhouse BD
    Biol Psychiatry; 2012 Mar; 71(5):467-73. PubMed ID: 21890109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylphenidate and atomoxetine enhance prefrontal function through α2-adrenergic and dopamine D1 receptors.
    Gamo NJ; Wang M; Arnsten AF
    J Am Acad Child Adolesc Psychiatry; 2010 Oct; 49(10):1011-23. PubMed ID: 20855046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurocircuitry underlying the preferential sensitivity of prefrontal catecholamines to low-dose psychostimulants.
    Schmeichel BE; Berridge CW
    Neuropsychopharmacology; 2013 May; 38(6):1078-84. PubMed ID: 23303075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A selective dopamine reuptake inhibitor improves prefrontal cortex-dependent cognitive function: potential relevance to attention deficit hyperactivity disorder.
    Schmeichel BE; Zemlan FP; Berridge CW
    Neuropharmacology; 2013 Jan; 64(1):321-8. PubMed ID: 22796428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The prefrontal cortex and the caudate nucleus respond conjointly to methylphenidate (Ritalin). Concomitant behavioral and neuronal recording study.
    Venkataraman SS; Claussen CM; Kharas N; Dafny N
    Brain Res Bull; 2020 Apr; 157():77-89. PubMed ID: 31987926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cognition-enhancing effects of psychostimulants involve direct action in the prefrontal cortex.
    Spencer RC; Devilbiss DM; Berridge CW
    Biol Psychiatry; 2015 Jun; 77(11):940-50. PubMed ID: 25499957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Psychostimulants and atomoxetine alter the electrophysiological activity of prefrontal cortex neurons, interaction with catecholamine and glutamate NMDA receptors.
    Di Miceli M; Gronier B
    Psychopharmacology (Berl); 2015 Jun; 232(12):2191-205. PubMed ID: 25572531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylphenidate exerts dose-dependent effects on glutamate receptors and behaviors.
    Cheng J; Xiong Z; Duffney LJ; Wei J; Liu A; Liu S; Chen GJ; Yan Z
    Biol Psychiatry; 2014 Dec; 76(12):953-62. PubMed ID: 24832867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of methylphenidate treatment during adolescence on norepinephrine transporter function in orbitofrontal cortex in a rat model of attention deficit hyperactivity disorder.
    Somkuwar SS; Kantak KM; Dwoskin LP
    J Neurosci Methods; 2015 Aug; 252():55-63. PubMed ID: 25680322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.