These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 18586019)

  • 21. A putative kinetic model for substrate metabolisation by Drosophila acetylcholinesterase.
    Stojan J; Marcel V; Estrada-Mondaca S; Klaebe A; Masson P; Fournier D
    FEBS Lett; 1998 Nov; 440(1-2):85-8. PubMed ID: 9862431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Backdoor opening mechanism in acetylcholinesterase based on X-ray crystallography and molecular dynamics simulations.
    Sanson B; Colletier JP; Xu Y; Lang PT; Jiang H; Silman I; Sussman JL; Weik M
    Protein Sci; 2011 Jul; 20(7):1114-8. PubMed ID: 21594947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Properties of water molecules in the active site gorge of acetylcholinesterase from computer simulation.
    Henchman RH; Tai K; Shen T; McCammon JA
    Biophys J; 2002 May; 82(5):2671-82. PubMed ID: 11964254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Construction of the pharmacophore model of acetylcholinesterase inhibitor.
    Zhu Y; Tong XY; Zhao Y; Chen H; Jiang FC
    Yao Xue Xue Bao; 2008 Mar; 43(3):267-76. PubMed ID: 18630262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase.
    Ripoll DR; Faerman CH; Axelsen PH; Silman I; Sussman JL
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5128-32. PubMed ID: 8506359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for subdomain flexibility in Drosophila melanogaster acetylcholinesterase.
    Stojan J; Ladurantie C; Siadat OR; Paquereau L; Fournier D
    Biochemistry; 2008 May; 47(20):5599-607. PubMed ID: 18439026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploiting protein fluctuations at the active-site gorge of human cholinesterases: further optimization of the design strategy to develop extremely potent inhibitors.
    Butini S; Campiani G; Borriello M; Gemma S; Panico A; Persico M; Catalanotti B; Ros S; Brindisi M; Agnusdei M; Fiorini I; Nacci V; Novellino E; Belinskaya T; Saxena A; Fattorusso C
    J Med Chem; 2008 Jun; 51(11):3154-70. PubMed ID: 18479118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strategies to resolve the catalytic mechanism of acetylcholinesterase.
    Rosenberry TL
    J Mol Neurosci; 2010 Jan; 40(1-2):32-9. PubMed ID: 19757206
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intrinsic conformational flexibility of acetylcholinesterase.
    Bui JM; Andrew McCammon J
    Chem Biol Interact; 2008 Sep; 175(1-3):303-4. PubMed ID: 18452905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acetylcholine recognition by a deep, biomimetic pocket.
    Hof F; Trembleau L; Ullrich EC; Rebek J
    Angew Chem Int Ed Engl; 2003 Jul; 42(27):3150-3. PubMed ID: 12866104
    [No Abstract]   [Full Text] [Related]  

  • 31. Open "back door" in a molecular dynamics simulation of acetylcholinesterase.
    Gilson MK; Straatsma TP; McCammon JA; Ripoll DR; Faerman CH; Axelsen PH; Silman I; Sussman JL
    Science; 1994 Mar; 263(5151):1276-8. PubMed ID: 8122110
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The "back door" hypothesis for product clearance in acetylcholinesterase challenged by site-directed mutagenesis.
    Kronman C; Ordentlich A; Barak D; Velan B; Shafferman A
    J Biol Chem; 1994 Nov; 269(45):27819-22. PubMed ID: 7961709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and structure-activity relationship of Huprine derivatives as human acetylcholinesterase inhibitors.
    Ronco C; Sorin G; Nachon F; Foucault R; Jean L; Romieu A; Renard PY
    Bioorg Med Chem; 2009 Jul; 17(13):4523-36. PubMed ID: 19473849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The X-ray crystal structure of an Arthrobacter protophormiae endo-beta-N-acetylglucosaminidase reveals a (beta/alpha)(8) catalytic domain, two ancillary domains and active site residues key for transglycosylation activity.
    Ling Z; Suits MD; Bingham RJ; Bruce NC; Davies GJ; Fairbanks AJ; Moir JW; Taylor EJ
    J Mol Biol; 2009 May; 389(1):1-9. PubMed ID: 19327363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fixation of the two Tabun isomers in acetylcholinesterase: a QM/MM study.
    Kwasnieski O; Verdier L; Malacria M; Derat E
    J Phys Chem B; 2009 Jul; 113(29):10001-7. PubMed ID: 19569635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of deacylation in activation of substrate hydrolysis by Drosophila acetylcholinesterase.
    Brochier L; Pontié Y; Willson M; Estrada-Mondaca S; Czaplicki J; Klaébé A; Fournier D
    J Biol Chem; 2001 May; 276(21):18296-302. PubMed ID: 11278288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Consensus superiority of the pharmacophore-based alignment, over maximum common substructure (MCS): 3D-QSAR studies on carbamates as acetylcholinesterase inhibitors.
    Chaudhaery SS; Roy KK; Saxena AK
    J Chem Inf Model; 2009 Jun; 49(6):1590-601. PubMed ID: 19441865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structural basis of substrate recognition in an exo-beta-D-glucosaminidase involved in chitosan hydrolysis.
    van Bueren AL; Ghinet MG; Gregg K; Fleury A; Brzezinski R; Boraston AB
    J Mol Biol; 2009 Jan; 385(1):131-9. PubMed ID: 18976664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular interactions of cholinesterases inhibitors using in silico methods: current status and future prospects.
    Khan MT
    N Biotechnol; 2009 Jun; 25(5):331-46. PubMed ID: 19491049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acetylcholinesterase and apoptosis. A novel perspective for an old enzyme.
    Jiang H; Zhang XJ
    FEBS J; 2008 Feb; 275(4):612-7. PubMed ID: 18205833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.