BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 18586033)

  • 1. Cold-adapted maturation of thermophilic WF146 protease by mimicking the propeptide binding interactions of psychrophilic subtilisin S41.
    Yang YR; Zhu H; Fang N; Liang X; Zhong CQ; Tang XF; Shen P; Tang B
    FEBS Lett; 2008 Jul; 582(17):2620-6. PubMed ID: 18586033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The roles of surface loop insertions and disulfide bond in the stabilization of thermophilic WF146 protease.
    Bian Y; Liang X; Fang N; Tang XF; Tang B; Shen P; Peng Z
    FEBS Lett; 2006 Oct; 580(25):6007-14. PubMed ID: 17052711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into cold inactivation of tryptophanase and cold adaptation of subtilisin S41.
    Almog O; Kogan A; Leeuw Md; Gdalevsky GY; Cohen-Luria R; Parola AH
    Biopolymers; 2008 May; 89(5):354-9. PubMed ID: 17937401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state.
    Almog O; González A; Godin N; de Leeuw M; Mekel MJ; Klein D; Braun S; Shoham G; Walter RL
    Proteins; 2009 Feb; 74(2):489-96. PubMed ID: 18655058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis.
    Zhong CQ; Song S; Fang N; Liang X; Zhu H; Tang XF; Tang B
    Biotechnol Bioeng; 2009 Dec; 104(5):862-70. PubMed ID: 19609954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and analysis of WF146 protease, a novel thermophilic subtilisin-like protease with four inserted surface loops.
    Wu J; Bian Y; Tang B; Chen X; Shen P; Peng Z
    FEMS Microbiol Lett; 2004 Jan; 230(2):251-8. PubMed ID: 14757247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveals structural aspects of cold adaptation.
    Arnórsdóttir J; Kristjánsson MM; Ficner R
    FEBS J; 2005 Feb; 272(3):832-45. PubMed ID: 15670163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis for auto- and hetero-catalytic maturation of a thermostable subtilase from thermophilic Bacillus sp. WF146.
    Zhu H; Xu BL; Liang X; Yang YR; Tang XF; Tang B
    J Biol Chem; 2013 Nov; 288(48):34826-38. PubMed ID: 24145031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex at 2.0 A resolution.
    Jain SC; Shinde U; Li Y; Inouye M; Berman HM
    J Mol Biol; 1998 Nov; 284(1):137-44. PubMed ID: 9811547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of proline substitutions on stability and kinetic properties of a cold adapted subtilase.
    Arnórsdóttir J; Sigtryggsdóttir AR; Thorbjarnardóttir SH; Kristjánsson MM
    J Biochem; 2009 Mar; 145(3):325-9. PubMed ID: 19074503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41.
    Davail S; Feller G; Narinx E; Gerday C
    J Biol Chem; 1994 Jul; 269(26):17448-53. PubMed ID: 8021248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the Thermostability and Activity of a Thermophilic Subtilase by Incorporating Structural Elements of Its Psychrophilic Counterpart.
    Xu BL; Dai M; Chen Y; Meng D; Wang Y; Fang N; Tang XF; Tang B
    Appl Environ Microbiol; 2015 Sep; 81(18):6302-13. PubMed ID: 26150464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of cold-adapted subtilisine-like proteinase of endemic yeast Leucosporidium antarcticum.
    Turkiewicz M; Pazgier M; Kalinowska H; Bielecki S
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):329-32. PubMed ID: 15954613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirement of left-handed glycine residue for high stability of the Tk-subtilisin propeptide as revealed by mutational and crystallographic analyses.
    Pulido MA; Tanaka S; Sringiew C; You DJ; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2007 Dec; 374(5):1359-73. PubMed ID: 17988685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the interactions critical for propeptide-catalyzed folding of Tk-subtilisin.
    Tanaka S; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2009 Nov; 394(2):306-19. PubMed ID: 19766655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complete amino acid substitutions at position 131 that are positively involved in cold adaptation of subtilisin BPN'.
    Taguchi S; Komada S; Momose H
    Appl Environ Microbiol; 2000 Apr; 66(4):1410-5. PubMed ID: 10742220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed evolution of Tk-subtilisin from a hyperthermophilic archaeon: identification of a single amino acid substitution responsible for low-temperature adaptation.
    Pulido MA; Koga Y; Takano K; Kanaya S
    Protein Eng Des Sel; 2007 Mar; 20(3):143-53. PubMed ID: 17351019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of keratinolytic activity of a thermophilic subtilase by improving its autolysis resistance and thermostability under reducing conditions.
    Liang X; Bian Y; Tang XF; Xiao G; Tang B
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):999-1006. PubMed ID: 20306186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatics-driven, rational engineering of protein thermostability.
    Ditursi MK; Kwon SJ; Reeder PJ; Dordick JS
    Protein Eng Des Sel; 2006 Nov; 19(11):517-24. PubMed ID: 17003065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.