BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 18586072)

  • 1. Coffee improves auditory neuropathy in diabetic mice.
    Hong BN; Yi TH; Park R; Kim SY; Kang TH
    Neurosci Lett; 2008 Aug; 441(3):302-6. PubMed ID: 18586072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory neuropathy in streptozotocin-induced diabetic mouse.
    Hong BN; Kang TH
    Neurosci Lett; 2008 Feb; 431(3):268-72. PubMed ID: 18164131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-dosage pyridoxine-induced auditory neuropathy and protection with coffee in mice.
    Hong BN; Yi TH; Kim SY; Kang TH
    Biol Pharm Bull; 2009 Apr; 32(4):597-603. PubMed ID: 19336890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological effects of auditory nerve myelinopathy in chinchillas.
    El-Badry MM; Ding DL; McFadden SL; Eddins AC
    Eur J Neurosci; 2007 Mar; 25(5):1437-46. PubMed ID: 17425569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronological changes in compromised olivocochlear activity and the effect of insulin in diabetic Wistar rats.
    Wu HP; Guo YL; Cheng TJ; Hsu CJ
    Hear Res; 2010 Dec; 270(1-2):173-8. PubMed ID: 20678565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GFAP aggregates in the cochlear nerve increase the noise vulnerability of sensory cells in the organ of Corti in the murine model of Alexander disease.
    Masuda M; Tanaka KF; Kanzaki S; Wakabayashi K; Oishi N; Suzuki T; Ikenaka K; Ogawa K
    Neurosci Res; 2008 Sep; 62(1):15-24. PubMed ID: 18602179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brainstem auditory evoked potential monitoring: when is change in wave V significant?
    James ML; Husain AM
    Neurology; 2005 Nov; 65(10):1551-5. PubMed ID: 16301480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of electrically evoked auditory brainstem responses in implanted children with auditory neuropathy/dyssynchrony.
    Runge-Samuelson CL; Drake S; Wackym PA
    Otol Neurotol; 2008 Feb; 29(2):174-8. PubMed ID: 18025997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and differentiation of sensorineural hearing loss in mice using auditory steady-state responses and transient auditory brainstem responses.
    Pauli-Magnus D; Hoch G; Strenzke N; Anderson S; Jentsch TJ; Moser T
    Neuroscience; 2007 Nov; 149(3):673-84. PubMed ID: 17869440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory deprivation of the central auditory system resulting from selective inner hair cell loss: animal model of auditory neuropathy.
    Salvi RJ; Wang J; Ding D; Stecker N; Arnold S
    Scand Audiol Suppl; 1999; 51():1-12. PubMed ID: 10803909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of caffeine on central auditory pathways: an evoked potential study.
    Dixit A; Vaney N; Tandon OP
    Hear Res; 2006 Oct; 220(1-2):61-6. PubMed ID: 16914275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nerve conduction velocity and evoked potential latencies in streptozotocin-diabetic rats: effects of treatment with an angiotensin converting enzyme inhibitor.
    Manschot SM; Gispen WH; Kappelle LJ; Biessels GJ
    Diabetes Metab Res Rev; 2003; 19(6):469-77. PubMed ID: 14648806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency-specific electrocochleography indicates that presynaptic and postsynaptic mechanisms of auditory neuropathy exist.
    McMahon CM; Patuzzi RB; Gibson WP; Sanli H
    Ear Hear; 2008 Jun; 29(3):314-25. PubMed ID: 18344874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensorineural hearing loss in insulin-like growth factor I-null mice: a new model of human deafness.
    Cediel R; Riquelme R; Contreras J; Díaz A; Varela-Nieto I
    Eur J Neurosci; 2006 Jan; 23(2):587-90. PubMed ID: 16420467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curculigo orchioides, natural compounds for the treatment of noise-induced hearing loss in mice.
    Hong BN; You YO; Kang TH
    Arch Pharm Res; 2011 Apr; 34(4):653-9. PubMed ID: 21544731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trigonelline promotes auditory function through nerve growth factor signaling on diabetic animal models.
    Castañeda R; Rodriguez I; Nam YH; Hong BN; Kang TH
    Phytomedicine; 2017 Dec; 36():128-136. PubMed ID: 29157806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorogenic acid rescues sensorineural auditory function in a diabetic animal model.
    Hong BN; Nam YH; Woo SH; Kang TH
    Neurosci Lett; 2017 Feb; 640():64-69. PubMed ID: 28093303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute and chronic effects of carbamazepine, phenytoin, valproate and vinpocetine on BAEP parameters and threshold in the guinea pig.
    Sitges M; Nekrassov V
    Clin Neurophysiol; 2007 Feb; 118(2):420-6. PubMed ID: 17157555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caspase inhibitor facilitates recovery of hearing by protecting the cochlear lateral wall from acute cochlear mitochondrial dysfunction.
    Mizutari K; Matsunaga T; Kamiya K; Fujinami Y; Fujii M; Ogawa K
    J Neurosci Res; 2008 Jan; 86(1):215-22. PubMed ID: 17722114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinction between auditory electrophysiological responses in type 1 and type 2 diabetic animal models.
    Hong BN; Kang TH
    Neurosci Lett; 2014 Apr; 566():309-14. PubMed ID: 24607932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.