These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

686 related articles for article (PubMed ID: 18586102)

  • 1. Combining protein complementation assays with resonance energy transfer to detect multipartner protein complexes in living cells.
    Rebois RV; Robitaille M; Pétrin D; Zylbergold P; Trieu P; Hébert TE
    Methods; 2008 Jul; 45(3):214-8. PubMed ID: 18586102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multicolor BiFC analysis of competition among G protein beta and gamma subunit interactions.
    Hynes TR; Yost E; Mervine S; Berlot CH
    Methods; 2008 Jul; 45(3):207-13. PubMed ID: 18586104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence imaging using a fluorescent protein with a large Stokes shift.
    Kogure T; Kawano H; Abe Y; Miyawaki A
    Methods; 2008 Jul; 45(3):223-6. PubMed ID: 18586106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells.
    Kobayashi H; Picard LP; Schönegge AM; Bouvier M
    Nat Protoc; 2019 Apr; 14(4):1084-1107. PubMed ID: 30911173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of in vitro SUMOylation using bioluminescence resonance energy transfer (BRET).
    Kim YP; Jin Z; Kim E; Park S; Oh YH; Kim HS
    Biochem Biophys Res Commun; 2009 May; 382(3):530-4. PubMed ID: 19289109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPCR oligomerization analysis by means of BRET and dFRAP.
    Ciruela F; Fernández-Dueñas V
    Methods Mol Biol; 2015; 1272():133-41. PubMed ID: 25563182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of heteromerization of more than two proteins by sequential BRET-FRET.
    Carriba P; Navarro G; Ciruela F; Ferré S; Casadó V; Agnati L; Cortés A; Mallol J; Fuxe K; Canela EI; Lluís C; Franco R
    Nat Methods; 2008 Aug; 5(8):727-33. PubMed ID: 18587404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta.
    Citovsky V; Lee LY; Vyas S; Glick E; Chen MH; Vainstein A; Gafni Y; Gelvin SB; Tzfira T
    J Mol Biol; 2006 Oct; 362(5):1120-31. PubMed ID: 16949607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of receptor-receptor interaction by combined application of FRET and microscopy.
    Prasad S; Zeug A; Ponimaskin E
    Methods Cell Biol; 2013; 117():243-65. PubMed ID: 24143982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential bioluminescence resonance energy transfer-fluorescence resonance energy transfer-based ratiometric protease assays with fusion proteins of firefly luciferase and red fluorescent protein.
    Branchini BR; Rosenberg JC; Ablamsky DM; Taylor KP; Southworth TL; Linder SJ
    Anal Biochem; 2011 Jul; 414(2):239-45. PubMed ID: 21453669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of tumor necrosis factor receptor-associated factor trimerization in living cells by CFP->YFP->mRFP FRET detected by flow cytometry.
    He L; Wu X; Simone J; Hewgill D; Lipsky PE
    Nucleic Acids Res; 2005 Apr; 33(6):e61. PubMed ID: 15805120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localizing protein-protein interactions by bimolecular fluorescence complementation in planta.
    Citovsky V; Gafni Y; Tzfira T
    Methods; 2008 Jul; 45(3):196-206. PubMed ID: 18586107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of protein interaction in living cells by two-photon spectral imaging with fluorescent protein fluorescence resonance energy transfer pair devoid of acceptor bleed-through.
    Kim J; Li X; Kang MS; Im KB; Genovesio A; Grailhe R
    Cytometry A; 2012 Feb; 81(2):112-9. PubMed ID: 22076866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring protein-protein interactions in living cells by bioluminescence resonance energy transfer (BRET).
    Hamdan FF; Percherancier Y; Breton B; Bouvier M
    Curr Protoc Neurosci; 2006 Feb; Chapter 5():Unit 5.23. PubMed ID: 18428639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and biophysical characterization of serotonin 5-HT2C receptor homodimers on the plasma membrane of living cells.
    Herrick-Davis K; Grinde E; Mazurkiewicz JE
    Biochemistry; 2004 Nov; 43(44):13963-71. PubMed ID: 15518545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping of C-termini of V-ATPase subunits by in vivo-FRET measurements.
    Seidel T; Golldack D; Dietz KJ
    FEBS Lett; 2005 Aug; 579(20):4374-82. PubMed ID: 16061227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RGS2 interacts with Gs and adenylyl cyclase in living cells.
    Roy AA; Baragli A; Bernstein LS; Hepler JR; Hébert TE; Chidiac P
    Cell Signal; 2006 Mar; 18(3):336-48. PubMed ID: 16095880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicolor BiFC analysis of G protein βγ complex formation and localization.
    Hynes TR; Yost EA; Yost SM; Berlot CH
    Methods Mol Biol; 2011; 756():229-43. PubMed ID: 21870229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.