BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 18586389)

  • 1. Heterogeneous catalytic degradation of phenolic substrates: catalysts activity.
    Liotta LF; Gruttadauria M; Di Carlo G; Perrini G; Librando V
    J Hazard Mater; 2009 Mar; 162(2-3):588-606. PubMed ID: 18586389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ozonation catalyzed by homogeneous and heterogeneous catalysts for degradation of DEHP in aqueous phase.
    Hammad Khan M; Jung JY
    Chemosphere; 2008 Jun; 72(4):690-6. PubMed ID: 18405939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technologies for the removal of phenol from fluid streams: a short review of recent developments.
    Busca G; Berardinelli S; Resini C; Arrighi L
    J Hazard Mater; 2008 Dec; 160(2-3):265-88. PubMed ID: 18455866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic ozonation of phenol in water with natural brucite and magnesia.
    He K; Dong YM; Li Z; Yin L; Zhang AM; Zheng YC
    J Hazard Mater; 2008 Nov; 159(2-3):587-92. PubMed ID: 18400390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noble-metal-based catalysts supported on zeolites and macro-mesoporous metal oxide supports for the total oxidation of volatile organic compounds.
    Barakat T; Rooke JC; Tidahy HL; Hosseini M; Cousin R; Lamonier JF; Giraudon JM; De Weireld G; Su BL; Siffert S
    ChemSusChem; 2011 Oct; 4(10):1420-30. PubMed ID: 21957051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic ozone aqueous decomposition promoted by natural zeolite and volcanic sand.
    Valdés H; Farfán VJ; Manoli JA; Zaror CA
    J Hazard Mater; 2009 Jun; 165(1-3):915-22. PubMed ID: 19058912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review.
    Kim KH; Ihm SK
    J Hazard Mater; 2011 Feb; 186(1):16-34. PubMed ID: 21122984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supported Cu(II) polymer catalysts for aqueous phenol oxidation.
    Castro IU; Stüber F; Fabregat A; Font J; Fortuny A; Bengoa C
    J Hazard Mater; 2009 Apr; 163(2-3):809-15. PubMed ID: 18722052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ruthenium versus platinum on cerium materials in wet air oxidation of acetic acid.
    Gaálová J; Barbier J; Rossignol S
    J Hazard Mater; 2010 Sep; 181(1-3):633-9. PubMed ID: 20638962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of morphology and crystallite phases of titanium oxide on the catalytic ozonation of phenol.
    Song S; Liu Z; He Z; Zhang A; Chen J; Yang Y; Xu X
    Environ Sci Technol; 2010 May; 44(10):3913-8. PubMed ID: 20408545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65 Zr0.35 O2 prepared by continuous hydrothermal synthesis in supercritical water.
    Kim KH; Kim JR; Ihm SK
    J Hazard Mater; 2009 Aug; 167(1-3):1158-62. PubMed ID: 19264401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol.
    Calleja G; Melero JA; Martínez F; Molina R
    Water Res; 2005 May; 39(9):1741-50. PubMed ID: 15899272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in immobilized metal catalysts for environmentally benign oxidation of alcohols.
    Matsumoto T; Ueno M; Wang N; Kobayashi S
    Chem Asian J; 2008 Feb; 3(2):196-214. PubMed ID: 18232022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics study on catalytic wet air oxidation of phenol by several metal oxide catalysts.
    Wan JF; Feng YJ; Cai WM; Yang SX; Sun XJ
    J Environ Sci (China); 2004; 16(4):556-8. PubMed ID: 15495955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron type catalysts for the ozonation of oxalic acid in water.
    Beltrán FJ; Rivas FJ; Montero-de-Espinosa R
    Water Res; 2005 Sep; 39(15):3553-64. PubMed ID: 16095660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable green catalysis by supported metal nanoparticles.
    Fukuoka A; Dhepe PL
    Chem Rec; 2009; 9(4):224-35. PubMed ID: 19701957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges.
    Besson M; Descorme C; Bernardi M; Gallezot P; di Gregorio F; Grosjean N; Minh DP; Pintar A
    Environ Technol; 2010 Dec; 31(13):1441-7. PubMed ID: 21214003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds.
    Zhang S; Zhao X; Niu H; Shi Y; Cai Y; Jiang G
    J Hazard Mater; 2009 Aug; 167(1-3):560-6. PubMed ID: 19201085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ESR ST study of hydroxyl radical generation in wet peroxide system catalyzed by heterogeneous ruthenium.
    Rokhina EV; Golovina EA; As Hv; Virkutyte J
    Chemosphere; 2009 Sep; 77(1):148-50. PubMed ID: 19487011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of phenolic compounds by lactoperoxidase. Evidence for the presence of a low-potential compound II during catalytic turnover.
    Monzani E; Gatti AL; Profumo A; Casella L; Gullotti M
    Biochemistry; 1997 Feb; 36(7):1918-26. PubMed ID: 9048579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.