BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 18586488)

  • 1. Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment.
    Brito JO; Silva FG; Leão MM; Almeida G
    Bioresour Technol; 2008 Dec; 99(18):8545-8. PubMed ID: 18586488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Cellulose regenerated from solutions of pine and eucalyptus woods in 1-allyl-3-methilimidazolium chloride.
    Casas A; Alonso MV; Oliet M; Santos TM; Rodriguez F
    Carbohydr Polym; 2013 Feb; 92(2):1946-52. PubMed ID: 23399242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of storage time on the composition and content of wood extractives in Eucalyptus cultivated in Brazil.
    Silvério FO; Barbosa LC; Maltha CR; Fidêncio PH; Cruz MP; Veloso DP; Milanez AF
    Bioresour Technol; 2008 Jul; 99(11):4878-86. PubMed ID: 17988861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral characterization of eucalyptus wood.
    Popescu CM; Popescu MC; Singurel G; Vasile C; Argyropoulos DS; Willfor S
    Appl Spectrosc; 2007 Nov; 61(11):1168-77. PubMed ID: 18028695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignin changes after steam explosion and laccase-mediator treatment of eucalyptus wood chips.
    Martin-Sampedro R; Capanema EA; Hoeger I; Villar JC; Rojas OJ
    J Agric Food Chem; 2011 Aug; 59(16):8761-9. PubMed ID: 21749069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of heat treatment on physical and technological properties and surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana) wood.
    Gündüz G; Korkut S; Korkut DS
    Bioresour Technol; 2008 May; 99(7):2275-80. PubMed ID: 17604619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative evaluation of three lignin isolation protocols for various wood species.
    Guerra A; Filpponen I; Lucia LA; Argyropoulos DS
    J Agric Food Chem; 2006 Dec; 54(26):9696-705. PubMed ID: 17177489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between density and ultrasonic velocity in Brazilian tropical woods.
    de Oliveira FG; Sales A
    Bioresour Technol; 2006 Dec; 97(18):2443-6. PubMed ID: 16311030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis.
    Monrroy M; Ortega I; Ramírez M; Baeza J; Freer J
    Enzyme Microb Technol; 2011 Oct; 49(5):472-7. PubMed ID: 22112620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in residual lignin properties between Betula verrucosa and Eucalyptus urograndis kraft pulps.
    Hänninen TA; Kontturi E; Isogai A; Vuorinen T
    Biopolymers; 2008 Oct; 89(10):889-93. PubMed ID: 18488987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-thirteen cross-polarization magic angle spinning nuclear magnetic resonance and Fourier transform infrared studies of thermally modified wood exposed to brown and soft rot fungi.
    Sivonen H; Nuopponen M; Maunu SL; Sundholm F; Vuorinen T
    Appl Spectrosc; 2003 Mar; 57(3):266-73. PubMed ID: 14658617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolysis of sweet sorghum bagasse and eucalyptus wood chips with liquid hot water.
    Yu Q; Zhuang X; Wang Q; Qi W; Tan X; Yuan Z
    Bioresour Technol; 2012 Jul; 116():220-5. PubMed ID: 22609679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Eucalyptus globulus wood autohydrolysis conditions on the reaction products.
    Garrote G; Kabel MA; Schols HA; Falqué E; Domínguez H; Parajó JC
    J Agric Food Chem; 2007 Oct; 55(22):9006-13. PubMed ID: 17900164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC-MS/FID.
    Lourenço A; Gominho J; Marques AV; Pereira H
    Bioresour Technol; 2012 Nov; 123():296-302. PubMed ID: 22940333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals.
    Li J; Gellerstedt G; Toven K
    Bioresour Technol; 2009 May; 100(9):2556-61. PubMed ID: 19157871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of arylglycerol-beta-aryl ether linkages in enzymatic mild acidolysis lignins (EMAL): comparison of DFRC/(31)P NMR with thioacidolysis.
    Guerra A; Norambuena M; Freer J; Argyropoulos DS
    J Nat Prod; 2008 May; 71(5):836-41. PubMed ID: 18419155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the pyrolysis behavior of lignins from different tree species.
    Wang S; Wang K; Liu Q; Gu Y; Luo Z; Cen K; Fransson T
    Biotechnol Adv; 2009; 27(5):562-7. PubMed ID: 19393737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of thermal treatments on technological properties of wood from two Eucalyptus species.
    Cademartori PH; Missio AL; Mattos BD; Gatto DA
    An Acad Bras Cienc; 2015 Mar; 87(1):471-81. PubMed ID: 25806991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated hot-compressed water and laccase-mediator treatments of Eucalyptus grandis fibers: structural changes of fiber and lignin.
    Wu JQ; Wen JL; Yuan TQ; Sun RC
    J Agric Food Chem; 2015 Feb; 63(6):1763-72. PubMed ID: 25639522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of fast pyrolysis bio-oils produced from pretreated pine wood.
    Hassan el-BM; Steele PH; Ingram L
    Appl Biochem Biotechnol; 2009 May; 154(1-3):3-13. PubMed ID: 19050831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.