BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 18586488)

  • 21. Characterization, refining and antioxidant activity of saccharides derived from hemicelluloses of wood and rice husks.
    Rivas S; Conde E; Moure A; Domínguez H; Parajó JC
    Food Chem; 2013 Nov; 141(1):495-502. PubMed ID: 23768385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks.
    Gutiérrez A; Rencoret J; Cadena EM; Rico A; Barth D; del Río JC; Martínez AT
    Bioresour Technol; 2012 Sep; 119():114-22. PubMed ID: 22728191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogenolysis of lignins: influence of the pretreatment using microwave and ultrasound irradiations.
    Gonçalves AR; Schuchardt U
    Appl Biochem Biotechnol; 2002; 98-100():1213-9. PubMed ID: 12018241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aerobic moving bed bioreactor performance: a comparative study of removal efficiencies of kraft mill effluents from Pinus radiata and Eucalyptus globulus as raw material.
    Villamar CA; Jarpa M; Decap J; Vidal G
    Water Sci Technol; 2009; 59(3):507-14. PubMed ID: 19214005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative study of the effect of refining on organosolv pulp from olive trimmings and kraft pulp from eucalyptus wood.
    Mutjé P; Pèlach MA; Vilaseca F; García JC; Jiménez L
    Bioresour Technol; 2005 Jul; 96(10):1125-9. PubMed ID: 15683902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative analysis of sugars in wood hydrolyzates with 1H NMR during the autohydrolysis of hardwoods.
    Mittal A; Scott GM; Amidon TE; Kiemle DJ; Stipanovic AJ
    Bioresour Technol; 2009 Dec; 100(24):6398-406. PubMed ID: 19674893
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accelerating the degradation of green plant waste with chemical decomposition agents.
    Kejun S; Juntao Z; Ying C; Zongwen L; Lin R; Cong L
    J Environ Manage; 2011 Oct; 92(10):2708-13. PubMed ID: 21763065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pretreatment of eucalyptus wood chips for enzymatic saccharification using combined sulfuric acid-free ethanol cooking and ball milling.
    Teramoto Y; Tanaka N; Lee SH; Endo T
    Biotechnol Bioeng; 2008 Jan; 99(1):75-85. PubMed ID: 17546689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy.
    Capanema EA; Balakshin MY; Kadla JF
    J Agric Food Chem; 2005 Dec; 53(25):9639-49. PubMed ID: 16332110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry.
    Özgenç Ö; Durmaz S; Boyaci IH; Eksi-Kocak H
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():395-400. PubMed ID: 27569772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fourier transform infrared studies of heterogeneity, photodegradation, and lignin/hemicellulose ratios within hardwoods and softwoods.
    Orton CR; Parkinson DY; Evans PD; Owen NL
    Appl Spectrosc; 2004 Nov; 58(11):1265-71. PubMed ID: 15606929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The decomposition of wood products in landfills in Sydney, Australia.
    Ximenes FA; Gardner WD; Cowie AL
    Waste Manag; 2008 Nov; 28(11):2344-54. PubMed ID: 18178075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of autohydrolysis of Eucalyptus urograndis and Eucalyptus grandis on influence of chemical components and crystallinity index.
    da Silva Morais AP; Sansígolo CA; de Oliveira Neto M
    Bioresour Technol; 2016 Aug; 214():623-628. PubMed ID: 27187566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood.
    Korkut S; Akgül M; Dündar T
    Bioresour Technol; 2008 Apr; 99(6):1861-8. PubMed ID: 17482811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor.
    Chang S; Zhao Z; Zheng A; Li X; Wang X; Huang Z; He F; Li H
    Bioresour Technol; 2013 Jun; 138():321-8. PubMed ID: 23624050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in the Chemical Composition and Decay Resistance of Thermally-Modified Hevea brasiliensis Wood.
    Severo ET; Calonego FW; Sansígolo CA; Bond B
    PLoS One; 2016; 11(3):e0151353. PubMed ID: 26986200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bark fast pyrolysis.
    Mohan D; Shi J; Nicholas DD; Pittman CU; Steele PH; Cooper JE
    Chemosphere; 2008 Mar; 71(3):456-65. PubMed ID: 18093634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elucidation of the structures of residual and dissolved pine kraft lignins using an HMQC NMR technique.
    Balakshin MY; Capanema EA; Chen CL; Gracz HS
    J Agric Food Chem; 2003 Oct; 51(21):6116-27. PubMed ID: 14518932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of different biomass materials as feedstock for fermentable sugar production.
    Zheng Y; Pan Z; Zhang R; Labavitch JM; Wang D; Teter SA; Jenkins BM
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):423-35. PubMed ID: 18478406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of wood density and chemical composition by means of diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) spectroscopy.
    Nuopponen MH; Birch GM; Sykes RJ; Lee SJ; Stewart D
    J Agric Food Chem; 2006 Jan; 54(1):34-40. PubMed ID: 16390174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.