These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18586547)

  • 1. Modification of the ultrasound induced activity by the presence of an electrode in a sono-reactor working at two low frequencies (20 and 40 kHz). Part II: Mapping flow velocities by particle image velocimetry (PIV).
    Mandroyan A; Doche ML; Hihn JY; Viennet R; Bailly Y; Simonin L
    Ultrason Sonochem; 2009 Jan; 16(1):97-104. PubMed ID: 18586547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of the ultrasound induced activity by the presence of an electrode in a sonoreactor working at two low frequencies (20 and 40 kHz). Part I: Active zone visualization by laser tomography.
    Mandroyan A; Viennet R; Bailly Y; Doche ML; Hihn JY
    Ultrason Sonochem; 2009 Jan; 16(1):88-96. PubMed ID: 18583170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realization of cavitation fields based on the acoustic resonance modes in an immersion-type sonochemical reactor.
    Wang YC; Yao MC
    Ultrason Sonochem; 2013 Jan; 20(1):565-70. PubMed ID: 22959558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial distribution of acoustic cavitation bubbles at different ultrasound frequencies.
    Ashokkumar M; Lee J; Iida Y; Yasui K; Kozuka T; Tuziuti T; Towata A
    Chemphyschem; 2010 Jun; 11(8):1680-4. PubMed ID: 20301178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation.
    Sajjadi B; Raman AA; Ibrahim S
    Ultrason Sonochem; 2015 May; 24():193-203. PubMed ID: 25435397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of acoustic flow and mechanical flow on the sonochemical efficiency in a rectangular sonochemical reactor.
    Kojima Y; Asakura Y; Sugiyama G; Koda S
    Ultrason Sonochem; 2010 Aug; 17(6):978-84. PubMed ID: 20044295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved sonochemical reactor.
    Cravotto G; Omiccioli G; Stevanato L
    Ultrason Sonochem; 2005 Feb; 12(3):213-7. PubMed ID: 15491884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV.
    Kinoshita H; Kaneda S; Fujii T; Oshima M
    Lab Chip; 2007 Mar; 7(3):338-46. PubMed ID: 17330165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the activity of ultrasound emitted in a perpendicular liquid flow using Particle Image Velocimetry (PIV) and electrochemical mass transfer measurements.
    Barthès M; Mazue G; Bonnet D; Viennet R; Hihn JY; Bailly Y
    Ultrasonics; 2015 May; 59():72-8. PubMed ID: 25724307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.
    Hallez L; Touyeras F; Hihn JY; Bailly Y
    Ultrason Sonochem; 2016 Mar; 29():420-7. PubMed ID: 26585023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FEM simulation of a sono-reactor accounting for vibrations of the boundaries.
    Louisnard O; Gonzalez-Garcia J; Tudela I; Klima J; Saez V; Vargas-Hernandez Y
    Ultrason Sonochem; 2009 Feb; 16(2):250-9. PubMed ID: 18805036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results.
    Liu L; Zheng H; Williams L; Zhang F; Wang R; Hertzberg J; Shandas R
    Phys Med Biol; 2008 Mar; 53(5):1397-412. PubMed ID: 18296769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respective contribution of cavitation and convective flow to local stirring in sonoreactors.
    Hihn JY; Doche ML; Mandroyan A; Hallez L; Pollet BG
    Ultrason Sonochem; 2011 Jul; 18(4):881-7. PubMed ID: 21382572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of liquid velocity distribution in a sonochemical reactor.
    Xu Z; Yasuda K; Koda S
    Ultrason Sonochem; 2013 Jan; 20(1):452-9. PubMed ID: 22634380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sonochemical efficiency dependence on liquid height and frequency in an improved sonochemical reactor.
    de La Rochebrochard S; Suptil J; Blais JF; Naffrechoux E
    Ultrason Sonochem; 2012 Mar; 19(2):280-5. PubMed ID: 21873099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PIV quantification of the flow induced by an ultrasonic horn and numerical modeling of the flow and related processing times.
    Schenker MC; Pourquié MJ; Eskin DG; Boersma BJ
    Ultrason Sonochem; 2013 Jan; 20(1):502-9. PubMed ID: 22658635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavitation, shock waves and the invasive nature of sonoelectrochemistry.
    Birkin PR; Offin DG; Joseph PF; Leighton TG
    J Phys Chem B; 2005 Sep; 109(35):16997-7005. PubMed ID: 16853164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A predictive model obtained by identification for the ultrasonic "equivalent" flow velocity at surface vicinity.
    Mandroyan A; Hihn JY; Doche ML; Pothier JM
    Ultrason Sonochem; 2010 Aug; 17(6):965-77. PubMed ID: 20071207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Velocity field measurement in gas-liquid metal two-phase flow with use of PIV and neutron radiography techniques.
    Saito Y; Mishima K; Tobita Y; Suzuki T; Matsubayashi M
    Appl Radiat Isot; 2004 Oct; 61(4):683-91. PubMed ID: 15246418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrically driven flow near a colloidal particle close to an electrode with a Faradaic current.
    Ristenpart WD; Aksay IA; Saville DA
    Langmuir; 2007 Mar; 23(7):4071-80. PubMed ID: 17335253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.