These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18586547)

  • 21. Understanding the ultrasound field of high viscosity mixtures: Experimental and numerical investigation of a lab scale batch reactor.
    Bampouli A; Goris Q; Van Olmen J; Solmaz S; Noorul Hussain M; Stefanidis GD; Van Gerven T
    Ultrason Sonochem; 2023 Jul; 97():106444. PubMed ID: 37257210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a compact x-ray particle image velocimetry for measuring opaque flows.
    Lee SJ; Kim GB; Yim DH; Jung SY
    Rev Sci Instrum; 2009 Mar; 80(3):033706. PubMed ID: 19334926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental investigation of conical bubble structure and acoustic flow structure in ultrasonic field.
    Ma X; Huang B; Wang G; Zhang M
    Ultrason Sonochem; 2017 Jan; 34():164-172. PubMed ID: 27773232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-resolved particle image velocimetry used in the investigation of cavitation bubble dynamics.
    Vogel A; Lauterborn W
    Appl Opt; 1988 May; 27(9):1869-76. PubMed ID: 20531668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A phenomenological investigation into the opposing effects of fluid flow on sonochemical activity at different frequency and power settings. 2. Fluid circulation at high frequencies.
    Bussemaker MJ; Zhang D
    Ultrason Sonochem; 2014 Mar; 21(2):485-92. PubMed ID: 24134828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterisation of flow behaviour and velocity induced by ultrasound using particle image velocimetry (PIV): Effect of fluid rheology, acoustic intensity and transducer tip size.
    O'Sullivan JJ; Espinoza CJU; Mihailova O; Alberini F
    Ultrason Sonochem; 2018 Nov; 48():218-230. PubMed ID: 30080545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasound assisted electrochemical oxidation of substituted toluenes.
    Lindermeir A; Horst C; Hoffmann U
    Ultrason Sonochem; 2003 Jul; 10(4-5):223-9. PubMed ID: 12818386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A phenomenological investigation into the opposing effects of fluid flow on sonochemical activity at different frequency and power settings. 1. Overhead stirring.
    Bussemaker MJ; Zhang D
    Ultrason Sonochem; 2014 Jan; 21(1):436-45. PubMed ID: 23899480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sonochemical reactor characterization in the presence of cylindrical and conical reflectors.
    Ferkous H; Hamdaoui O; Pétrier C
    Ultrason Sonochem; 2023 Oct; 99():106556. PubMed ID: 37586183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of exposure parameters on cavitation induced by low-level dual-frequency ultrasound.
    Barati AH; Mokhtari-Dizaji M; Mozdarani H; Bathaie Z; Hassan ZM
    Ultrason Sonochem; 2007 Sep; 14(6):783-9. PubMed ID: 17347019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PIV pictures of stream field predict haemolysis index of centrifugal pump with streamlined impeller.
    Qian KX; Feng ZG; Ru WM; Zeng P; Yuan HY
    J Med Eng Technol; 2007; 31(4):239-42. PubMed ID: 17566927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of sonochemical reaction of terephthalate ion by superposition of ultrasonic fields of various frequencies.
    Yasuda K; Torii T; Yasui K; Iida Y; Tuziuti T; Nakamura M; Asakura Y
    Ultrason Sonochem; 2007 Sep; 14(6):699-704. PubMed ID: 17336130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of ultrasound power and frequency upon corrosion kinetics of zinc in saline media.
    Doche ML; Hihn JY; Mandroyan A; Viennet R; Touyeras F
    Ultrason Sonochem; 2003 Oct; 10(6):357-62. PubMed ID: 12927612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-frequency acoustic emissions generated by a 20 kHz sonochemical horn processor detected using a novel broadband acoustic sensor: a preliminary study.
    Hodnett M; Chow R; Zeqiri B
    Ultrason Sonochem; 2004 Sep; 11(6):441-54. PubMed ID: 15302033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sonoelectrochemical and sonochemical effects of cavitation: correlation with interfacial cavitation induced by 20 kHz ultrasound.
    Hardcastle JL; Ball JC; Hong Q; Marken F; Compton RG; Bull SD; Davies SG
    Ultrason Sonochem; 2000 Jan; 7(1):7-14. PubMed ID: 10643632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energetic balance in an ultrasonic reactor using focused or flat high frequency transducers.
    Hallez L; Touyeras F; Hihn JY; Klima J
    Ultrason Sonochem; 2007 Sep; 14(6):739-49. PubMed ID: 17347018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescent particle image velocimetry: application to flow measurement in refractive index-matched porous media.
    Northrup MA; Kulp TJ; Angel SM
    Appl Opt; 1991 Jul; 30(21):3034-40. PubMed ID: 20706352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique.
    Yan D; Nguyen NT; Yang C; Huang X
    J Chem Phys; 2006 Jan; 124(2):021103. PubMed ID: 16422562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancement of sonochemical reaction rate by addition of micrometer-sized air bubbles.
    Tuziuti T; Yasui K; Kozuka T; Towata A; Iida Y
    J Phys Chem A; 2006 Sep; 110(37):10720-4. PubMed ID: 16970362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV).
    Qian M; Niu L; Wang Y; Jiang B; Jin Q; Jiang C; Zheng H
    Phys Med Biol; 2010 Oct; 55(20):6069-88. PubMed ID: 20858920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.