These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 18586605)

  • 1. Walkaround: mobile balance support for therapy of walking.
    Veg A; Popović DB
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):264-9. PubMed ID: 18586605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait deviations associated with post-stroke hemiparesis: improvement during treadmill walking using weight support, speed, support stiffness, and handrail hold.
    Chen G; Patten C; Kothari DH; Zajac FE
    Gait Posture; 2005 Aug; 22(1):57-62. PubMed ID: 15996593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait training of poststroke patients assisted by the Walkaround (body postural support).
    Dragin AS; Konstantinović LM; Veg A; Schwirtlich LB
    Int J Rehabil Res; 2014 Mar; 37(1):22-8. PubMed ID: 23820295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait synchronized force modulation during the stance period of one limb achieved by an active partial body weight support system.
    Franz JR; Riley PO; Dicharry J; Allaire PE; Kerrigan DC
    J Biomech; 2008 Nov; 41(15):3116-20. PubMed ID: 18986653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilometry is a predictor of gait performance in chronic hemiparetic stroke patients.
    Nardone A; Godi M; Grasso M; Guglielmetti S; Schieppati M
    Gait Posture; 2009 Jul; 30(1):5-10. PubMed ID: 19318253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of shoe lifts on static and dynamic postural control in individuals with hemiparesis.
    Chaudhuri S; Aruin AS
    Arch Phys Med Rehabil; 2000 Nov; 81(11):1498-503. PubMed ID: 11083355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of different walking aids on walking capacity of patients with poststroke hemiparesis.
    Allet L; Leemann B; Guyen E; Murphy L; Monnin D; Herrmann FR; Schnider A
    Arch Phys Med Rehabil; 2009 Aug; 90(8):1408-13. PubMed ID: 19651276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.
    Agrawal SK; Banala SK; Fattah A; Sangwan V; Krishnamoorthy V; Scholz JP; Hsu WL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):410-20. PubMed ID: 17894273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaze and postural reorientation in the control of locomotor steering after stroke.
    Lamontagne A; Fung J
    Neurorehabil Neural Repair; 2009; 23(3):256-66. PubMed ID: 19060133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and test of a novel closed-loop system that exploits the nociceptive withdrawal reflex for swing-phase support of the hemiparetic gait.
    Emborg J; Matjačić Z; Bendtsen JD; Spaich EG; Cikajlo I; Goljar N; Andersen OK
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):960-70. PubMed ID: 21134806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New functional electrical stimulation approaches to standing and walking.
    Mushahwar VK; Jacobs PL; Normann RA; Triolo RJ; Kleitman N
    J Neural Eng; 2007 Sep; 4(3):S181-97. PubMed ID: 17873417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative biomechanical gait analysis of patients with central cord syndrome walking with one crutch and two crutches.
    Gil-Agudo A; Pérez-Rizo E; Del Ama-Espinosa A; Crespo-Ruiz B; Pérez-Nombela S; Sánchez-Ramos A
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):551-7. PubMed ID: 19457601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of dynamic sitting balance on the independence of gait in hemiparetic patients.
    Morishita M; Amimoto K; Matsuda T; Arai Y; Yamada R; Baba T
    Gait Posture; 2009 Jun; 29(4):530-4. PubMed ID: 19138521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechanized gait trainer for restoration of gait.
    Hesse S; Uhlenbrock D
    J Rehabil Res Dev; 2000; 37(6):701-8. PubMed ID: 11321006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel biomechanical device improves gait pattern in patient with chronic nonspecific low back pain.
    Elbaz A; Mirovsky Y; Mor A; Enosh S; Debbi E; Segal G; Barzilay Y; Debi R
    Spine (Phila Pa 1976); 2009 Jul; 34(15):E507-12. PubMed ID: 19564755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the relative contribution of the paretic leg to the control of posture after stroke.
    Roerdink M; Geurts AC; de Haart M; Beek PJ
    Neurorehabil Neural Repair; 2009; 23(3):267-74. PubMed ID: 19074685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Walking with WALK! A cooperative, patient-driven neuroprosthetic system.
    Fuhr T; Quintern J; Riener R; Schmidt G
    IEEE Eng Med Biol Mag; 2008; 27(1):38-48. PubMed ID: 18270049
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparison of gait characteristics between older rolling walker users and older potential walker users.
    Liu HH; McGee M; Wang W; Persson M
    Arch Gerontol Geriatr; 2009; 48(3):276-80. PubMed ID: 18359111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal handgrip height of four-wheeled walker on various road conditions to reduce muscular load for elderly users with steady walking.
    Takanokura M
    J Biomech; 2010 Mar; 43(5):843-8. PubMed ID: 20006337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury.
    Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.