These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

519 related articles for article (PubMed ID: 18586607)

  • 1. Coordinated control of assistive robotic devices for activities of daily living tasks.
    Erol D; Sarkar N
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):278-85. PubMed ID: 18586607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation.
    Wolbrecht ET; Chan V; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):286-97. PubMed ID: 18586608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. School-based use of a robotic arm system by children with disabilities.
    Cook AM; Bentz B; Harbottle N; Lynch C; Miller B
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):452-60. PubMed ID: 16425826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VI.3. Rehabilitation robotics.
    Munih M; Bajd T
    Stud Health Technol Inform; 2010; 152():353-66. PubMed ID: 20407204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot.
    Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic design to improve ergonomics in human machine interaction.
    Schiele A; van der Helm FC
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):456-69. PubMed ID: 17190037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Standing-up robot: an assistive rehabilitative device for training and assessment.
    Kamnik R; Bajd T
    J Med Eng Technol; 2004; 28(2):74-80. PubMed ID: 14965861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the JACO robotic arm: clinico-economic study for powered wheelchair users with upper-extremity disabilities.
    Maheu V; Frappier J; Archambault PS; Routhier F
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975397. PubMed ID: 22275600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robotic personal aids for mobility and monitoring for the elderly.
    Spenko M; Yu H; Dubowsky S
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):344-51. PubMed ID: 17009494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A perspective on intelligent devices and environments in medical rehabilitation.
    Cooper RA; Dicianno BE; Brewer B; LoPresti E; Ding D; Simpson R; Grindle G; Wang H
    Med Eng Phys; 2008 Dec; 30(10):1387-98. PubMed ID: 18993108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation.
    Rosati G; Gallina P; Masiero S
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):560-9. PubMed ID: 18198714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotic arm skate for stroke rehabilitation.
    Wong CK; Jordan K; King M
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975389. PubMed ID: 22275593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of reaching kinematics during mirror and parallel robot assisted movements.
    Kadivar Z; Sung C; Thompson Z; O'Malley M; Liebschner M; Deng Z
    Stud Health Technol Inform; 2011; 163():247-53. PubMed ID: 21335798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A patient transfer apparatus between bed and stretcher.
    Wang H; Kasagami F
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):60-7. PubMed ID: 18270082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a robotic device for facilitating learning by children who have severe disabilities.
    Cook AM; Meng MQ; Gu JJ; Howery K
    IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):178-87. PubMed ID: 12503783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of a pneumatic orthosis for upper extremity stroke rehabilitation.
    Wolbrecht ET; Leavitt J; Reinkensmeyer DJ; Bobrow JE
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2687-93. PubMed ID: 17946132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human voluntary activity integration in the control of a standing-up rehabilitation robot: a simulation study.
    Kamnik R; Bajd T
    Med Eng Phys; 2007 Nov; 29(9):1019-29. PubMed ID: 17098459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assistive Control System for Upper Limb Rehabilitation Robot.
    Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motorized CPM/CAM physiotherapy device with sliding-mode Fuzzy Neural Network control loop.
    Ho HJ; Chen TC
    Comput Methods Programs Biomed; 2009 Nov; 96(2):96-107. PubMed ID: 19439391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.