These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18586936)

  • 1. CcpN controls central carbon fluxes in Bacillus subtilis.
    Tännler S; Fischer E; Le Coq D; Doan T; Jamet E; Sauer U; Aymerich S
    J Bacteriol; 2008 Sep; 190(18):6178-87. PubMed ID: 18586936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes.
    Servant P; Le Coq D; Aymerich S
    Mol Microbiol; 2005 Mar; 55(5):1435-51. PubMed ID: 15720552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of ligands affecting the activity of the transcriptional repressor CcpN from Bacillus subtilis.
    Licht A; Golbik R; Brantl S
    J Mol Biol; 2008 Jun; 380(1):17-30. PubMed ID: 18511073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CcpN: a moonlighting protein regulating catabolite repression of gluconeogenic genes in
    Sharma K; Sultana T; Dahms TES; Dillon JR
    Can J Microbiol; 2020 Dec; 66(12):723-732. PubMed ID: 32762636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transcriptional repressor CcpN from Bacillus subtilis uses different repression mechanisms at different promoters.
    Licht A; Brantl S
    J Biol Chem; 2009 Oct; 284(44):30032-8. PubMed ID: 19726675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of Proteins Out of Service: the GapB Case of Bacillus subtilis.
    Gerth U; Krieger E; Zühlke D; Reder A; Völker U; Hecker M
    J Bacteriol; 2017 Oct; 199(20):. PubMed ID: 28760849
    [No Abstract]   [Full Text] [Related]  

  • 7. Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis.
    Wang G; Bai L; Wang Z; Shi T; Chen T; Zhao X
    World J Microbiol Biotechnol; 2014 Jun; 30(6):1893-900. PubMed ID: 24477882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Search for additional targets of the transcriptional regulator CcpN from Bacillus subtilis.
    Eckart RA; Brantl S; Licht A
    FEMS Microbiol Lett; 2009 Oct; 299(2):223-31. PubMed ID: 19732150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The global nitrogen regulator GlnR is a direct transcriptional repressor of the key gluconeogenic gene
    Liu X; Wang X; Shao Z; Dang J; Wang W; Liu C; Wang J; Yuan H; Zhao G
    J Bacteriol; 2024 May; 206(5):e0000324. PubMed ID: 38606980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout.
    Yang C; Hua Q; Baba T; Mori H; Shimizu K
    Biotechnol Bioeng; 2003 Oct; 84(2):129-44. PubMed ID: 12966569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional repressor CcpN from Bacillus subtilis compensates asymmetric contact distribution by cooperative binding.
    Licht A; Brantl S
    J Mol Biol; 2006 Dec; 364(3):434-48. PubMed ID: 17011578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol.
    Toivari MH; Maaheimo H; Penttilä M; Ruohonen L
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):731-9. PubMed ID: 19711072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways.
    Blencke HM; Homuth G; Ludwig H; Mäder U; Hecker M; Stülke J
    Metab Eng; 2003 Apr; 5(2):133-49. PubMed ID: 12850135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway.
    Zamboni N; Fischer E; Laudert D; Aymerich S; Hohmann HP; Sauer U
    J Bacteriol; 2004 Jul; 186(14):4528-34. PubMed ID: 15231785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phosphoenolpyruvate carboxykinase also catalyzes C3 carboxylation at the interface of glycolysis and the TCA cycle of Bacillus subtilis.
    Zamboni N; Maaheimo H; Szyperski T; Hohmann HP; Sauer U
    Metab Eng; 2004 Oct; 6(4):277-84. PubMed ID: 15491857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon catabolite control of the metabolic network in Bacillus subtilis.
    Fujita Y
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SR1--a small RNA with two remarkably conserved functions.
    Gimpel M; Preis H; Barth E; Gramzow L; Brantl S
    Nucleic Acids Res; 2012 Dec; 40(22):11659-72. PubMed ID: 23034808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis.
    Duan YX; Chen T; Chen X; Zhao XM
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1907-14. PubMed ID: 19779711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 13 C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain.
    Toya Y; Hirasawa T; Morimoto T; Masuda K; Kageyama Y; Ozaki K; Ogasawara N; Shimizu H
    J Biotechnol; 2014 Jun; 179():42-9. PubMed ID: 24667539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic fluxes in riboflavin-producing Bacillus subtilis.
    Sauer U; Hatzimanikatis V; Bailey JE; Hochuli M; Szyperski T; Wüthrich K
    Nat Biotechnol; 1997 May; 15(5):448-52. PubMed ID: 9131624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.