These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 18586936)
21. Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. Tobisch S; Zühlke D; Bernhardt J; Stülke J; Hecker M J Bacteriol; 1999 Nov; 181(22):6996-7004. PubMed ID: 10559165 [TBL] [Abstract][Full Text] [Related]
22. Expression of the glycolytic gapA operon in Bacillus subtilis: differential syntheses of proteins encoded by the operon. Meinken C; Blencke HM; Ludwig H; Stülke J Microbiology (Reading); 2003 Mar; 149(Pt 3):751-761. PubMed ID: 12634343 [TBL] [Abstract][Full Text] [Related]
23. 13C-flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving Bacillus subtilis. Rühl M; Le Coq D; Aymerich S; Sauer U J Biol Chem; 2012 Aug; 287(33):27959-70. PubMed ID: 22740702 [TBL] [Abstract][Full Text] [Related]
25. Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in Bacillus subtilis. Licht A; Preis S; Brantl S Mol Microbiol; 2005 Oct; 58(1):189-206. PubMed ID: 16164558 [TBL] [Abstract][Full Text] [Related]
26. Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation. Ludwig H; Rebhan N; Blencke HM; Merzbacher M; Stülke J Mol Microbiol; 2002 Jul; 45(2):543-53. PubMed ID: 12123463 [TBL] [Abstract][Full Text] [Related]
27. Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Yoshida K; Kobayashi K; Miwa Y; Kang CM; Matsunaga M; Yamaguchi H; Tojo S; Yamamoto M; Nishi R; Ogasawara N; Nakayama T; Fujita Y Nucleic Acids Res; 2001 Feb; 29(3):683-92. PubMed ID: 11160890 [TBL] [Abstract][Full Text] [Related]
28. Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Doan T; Aymerich S Mol Microbiol; 2003 Mar; 47(6):1709-21. PubMed ID: 12622823 [TBL] [Abstract][Full Text] [Related]
29. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production. Hu J; Lei P; Mohsin A; Liu X; Huang M; Li L; Hu J; Hang H; Zhuang Y; Guo M Microb Cell Fact; 2017 Sep; 16(1):150. PubMed ID: 28899391 [TBL] [Abstract][Full Text] [Related]
30. Metabolic flux responses to genetic modification for shikimic acid production by Bacillus subtilis strains. Liu DF; Ai GM; Zheng QX; Liu C; Jiang CY; Liu LX; Zhang B; Liu YM; Yang C; Liu SJ Microb Cell Fact; 2014 Mar; 13(1):40. PubMed ID: 24628944 [TBL] [Abstract][Full Text] [Related]
31. Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Ludwig H; Homuth G; Schmalisch M; Dyka FM; Hecker M; Stülke J Mol Microbiol; 2001 Jul; 41(2):409-22. PubMed ID: 11489127 [TBL] [Abstract][Full Text] [Related]
32. Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. Fillinger S; Boschi-Muller S; Azza S; Dervyn E; Branlant G; Aymerich S J Biol Chem; 2000 May; 275(19):14031-7. PubMed ID: 10799476 [TBL] [Abstract][Full Text] [Related]
33. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579. van der Voort M; Kuipers OP; Buist G; de Vos WM; Abee T BMC Microbiol; 2008 Apr; 8():62. PubMed ID: 18416820 [TBL] [Abstract][Full Text] [Related]
34. Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures. Dauner M; Sonderegger M; Hochuli M; Szyperski T; Wüthrich K; Hohmann HP; Sauer U; Bailey JE Appl Environ Microbiol; 2002 Apr; 68(4):1760-71. PubMed ID: 11916694 [TBL] [Abstract][Full Text] [Related]
35. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Dauner M; Bailey JE; Sauer U Biotechnol Bioeng; 2001 Sep; 76(2):144-56. PubMed ID: 11505384 [TBL] [Abstract][Full Text] [Related]
36. Characterization of glucose-repression-resistant mutants of Bacillus subtilis: identification of the glcR gene. Stülke J; Martin-Verstraete I; Glaser P; Rapoport G Arch Microbiol; 2001 Jun; 175(6):441-9. PubMed ID: 11491085 [TBL] [Abstract][Full Text] [Related]
37. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis. Gu Y; Deng J; Liu Y; Li J; Shin HD; Du G; Chen J; Liu L Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731580 [TBL] [Abstract][Full Text] [Related]
38. Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture. Dauner M; Storni T; Sauer U J Bacteriol; 2001 Dec; 183(24):7308-17. PubMed ID: 11717290 [TBL] [Abstract][Full Text] [Related]
39. Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Moreno MS; Schneider BL; Maile RR; Weyler W; Saier MH Mol Microbiol; 2001 Mar; 39(5):1366-81. PubMed ID: 11251851 [TBL] [Abstract][Full Text] [Related]
40. The EIIGlc protein is involved in glucose-mediated activation of Escherichia coli gapA and gapB-pgk transcription. Charpentier B; Bardey V; Robas N; Branlant C J Bacteriol; 1998 Dec; 180(24):6476-83. PubMed ID: 9851989 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]