These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 18586973)
1. Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose. Meijnen JP; de Winde JH; Ruijssenaars HJ Appl Environ Microbiol; 2008 Aug; 74(16):5031-7. PubMed ID: 18586973 [TBL] [Abstract][Full Text] [Related]
2. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440. Le Meur S; Zinn M; Egli T; Thöny-Meyer L; Ren Q BMC Biotechnol; 2012 Aug; 12():53. PubMed ID: 22913372 [TBL] [Abstract][Full Text] [Related]
3. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327 [TBL] [Abstract][Full Text] [Related]
4. Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose. Dvořák P; de Lorenzo V Metab Eng; 2018 Jul; 48():94-108. PubMed ID: 29864584 [TBL] [Abstract][Full Text] [Related]
5. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Xiao H; Gu Y; Ning Y; Yang Y; Mitchell WJ; Jiang W; Yang S Appl Environ Microbiol; 2011 Nov; 77(22):7886-95. PubMed ID: 21926197 [TBL] [Abstract][Full Text] [Related]
6. Engineering of a xylose metabolic pathway in Rhodococcus strains. Xiong X; Wang X; Chen S Appl Environ Microbiol; 2012 Aug; 78(16):5483-91. PubMed ID: 22636009 [TBL] [Abstract][Full Text] [Related]
7. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Kawaguchi H; Vertès AA; Okino S; Inui M; Yukawa H Appl Environ Microbiol; 2006 May; 72(5):3418-28. PubMed ID: 16672486 [TBL] [Abstract][Full Text] [Related]
8. Establishment of oxidative D-xylose metabolism in Pseudomonas putida S12. Meijnen JP; de Winde JH; Ruijssenaars HJ Appl Environ Microbiol; 2009 May; 75(9):2784-91. PubMed ID: 19270113 [TBL] [Abstract][Full Text] [Related]
9. Improved p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy. Meijnen JP; Verhoef S; Briedjlal AA; de Winde JH; Ruijssenaars HJ Appl Microbiol Biotechnol; 2011 May; 90(3):885-93. PubMed ID: 21287166 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Sasaki M; Jojima T; Inui M; Yukawa H Appl Microbiol Biotechnol; 2008 Dec; 81(4):691-9. PubMed ID: 18810427 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains. Xia T; Eiteman MA; Altman E Microb Cell Fact; 2012 Jun; 11():77. PubMed ID: 22691294 [TBL] [Abstract][Full Text] [Related]
13. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis. Zhang B; Li XL; Fu J; Li N; Wang Z; Tang YJ; Chen T PLoS One; 2016; 11(7):e0159298. PubMed ID: 27467131 [TBL] [Abstract][Full Text] [Related]
14. Improvement of solvent production from xylose mother liquor by engineering the xylose metabolic pathway in Clostridium acetobutylicum EA 2018. Li Z; Xiao H; Jiang W; Jiang Y; Yang S Appl Biochem Biotechnol; 2013 Oct; 171(3):555-68. PubMed ID: 23949683 [TBL] [Abstract][Full Text] [Related]
15. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum. Zhang Y; Vadlani PV; Kumar A; Hardwidge PR; Govind R; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2016 Jan; 100(1):279-88. PubMed ID: 26433970 [TBL] [Abstract][Full Text] [Related]
16. Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid. Elmore JR; Dexter GN; Salvachúa D; O'Brien M; Klingeman DM; Gorday K; Michener JK; Peterson DJ; Beckham GT; Guss AM Metab Eng; 2020 Nov; 62():62-71. PubMed ID: 32828991 [TBL] [Abstract][Full Text] [Related]
17. xylA and xylB overexpression as a successful strategy for improving xylose utilization and poly-3-hydroxybutyrate production in Burkholderia sacchari. Guamán LP; Oliveira-Filho ER; Barba-Ostria C; Gomez JGC; Taciro MK; da Silva LF J Ind Microbiol Biotechnol; 2018 Mar; 45(3):165-173. PubMed ID: 29349569 [TBL] [Abstract][Full Text] [Related]
18. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613 [TBL] [Abstract][Full Text] [Related]
19. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Meiswinkel TM; Gopinath V; Lindner SN; Nampoothiri KM; Wendisch VF Microb Biotechnol; 2013 Mar; 6(2):131-40. PubMed ID: 23164409 [TBL] [Abstract][Full Text] [Related]