BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 18587051)

  • 1. Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition.
    Maiti A; Morgan MT; Pozharski E; Drohat AC
    Proc Natl Acad Sci U S A; 2008 Jul; 105(26):8890-5. PubMed ID: 18587051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stoichiometry and affinity for thymine DNA glycosylase binding to specific and nonspecific DNA.
    Morgan MT; Maiti A; Fitzgerald ME; Drohat AC
    Nucleic Acids Res; 2011 Mar; 39(6):2319-29. PubMed ID: 21097883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinating the initial steps of base excision repair. Apurinic/apyrimidinic endonuclease 1 actively stimulates thymine DNA glycosylase by disrupting the product complex.
    Fitzgerald ME; Drohat AC
    J Biol Chem; 2008 Nov; 283(47):32680-90. PubMed ID: 18805789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability.
    Bennett MT; Rodgers MT; Hebert AS; Ruslander LE; Eisele L; Drohat AC
    J Am Chem Soc; 2006 Sep; 128(38):12510-9. PubMed ID: 16984202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of human methyl-binding domain IV glycosylase bound to abasic DNA.
    Manvilla BA; Maiti A; Begley MC; Toth EA; Drohat AC
    J Mol Biol; 2012 Jul; 420(3):164-75. PubMed ID: 22560993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of substrate binding and catalysis on pH, ionic strength, and temperature for thymine DNA glycosylase: Insights into recognition and processing of G·T mispairs.
    Maiti A; Drohat AC
    DNA Repair (Amst); 2011 May; 10(5):545-53. PubMed ID: 21474392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic mechanism of the mismatch-specific DNA glycosylase methyl-CpG-binding domain 4.
    Ouzon-Shubeita H; Jung H; Lee MH; Koag MC; Lee S
    Biochem J; 2020 May; 477(9):1601-1612. PubMed ID: 32297632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA.
    Maiti A; Noon MS; MacKerell AD; Pozharski E; Drohat AC
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8091-6. PubMed ID: 22573813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Base excision repair of tandem modifications in a methylated CpG dinucleotide.
    Sassa A; Çağlayan M; Dyrkheeva NS; Beard WA; Wilson SH
    J Biol Chem; 2014 May; 289(20):13996-4008. PubMed ID: 24695738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA.
    Malik SS; Coey CT; Varney KM; Pozharski E; Drohat AC
    Nucleic Acids Res; 2015 Oct; 43(19):9541-52. PubMed ID: 26358812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human checkpoint sensor Rad9-Rad1-Hus1 interacts with and stimulates DNA repair enzyme TDG glycosylase.
    Guan X; Madabushi A; Chang DY; Fitzgerald ME; Shi G; Drohat AC; Lu AL
    Nucleic Acids Res; 2007; 35(18):6207-18. PubMed ID: 17855402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging.
    Buechner CN; Maiti A; Drohat AC; Tessmer I
    Nucleic Acids Res; 2015 Mar; 43(5):2716-29. PubMed ID: 25712093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA.
    Zhang L; Lu X; Lu J; Liang H; Dai Q; Xu GL; Luo C; Jiang H; He C
    Nat Chem Biol; 2012 Feb; 8(4):328-30. PubMed ID: 22327402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites.
    Bellacosa A; Drohat AC
    DNA Repair (Amst); 2015 Aug; 32():33-42. PubMed ID: 26021671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excision of 5-halogenated uracils by human thymine DNA glycosylase. Robust activity for DNA contexts other than CpG.
    Morgan MT; Bennett MT; Drohat AC
    J Biol Chem; 2007 Sep; 282(38):27578-86. PubMed ID: 17602166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues.
    Coey CT; Malik SS; Pidugu LS; Varney KM; Pozharski E; Drohat AC
    Nucleic Acids Res; 2016 Dec; 44(21):10248-10258. PubMed ID: 27580719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AP endonuclease 1 prevents the extension of a T/G mismatch by DNA polymerase β to prevent mutations in CpGs during base excision repair.
    Lai Y; Jiang Z; Zhou J; Osemota E; Liu Y
    DNA Repair (Amst); 2016 Jul; 43():89-97. PubMed ID: 27183823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human thymine DNA glycosylase (TDG) and methyl-CpG-binding protein 4 (MBD4) excise thymine glycol (Tg) from a Tg:G mispair.
    Yoon JH; Iwai S; O'Connor TR; Pfeifer GP
    Nucleic Acids Res; 2003 Sep; 31(18):5399-404. PubMed ID: 12954776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of a thwarted mismatch glycosylase DNA repair complex.
    Barrett TE; Schärer OD; Savva R; Brown T; Jiricny J; Verdine GL; Pearl LH
    EMBO J; 1999 Dec; 18(23):6599-609. PubMed ID: 10581234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for three thymine DNA glycosylases in human cell extracts: substrate specificities of thymine DNA glycosylase activities.
    Lari SU; Xu YZ; Day RS
    Med Sci Monit; 2005 Feb; 11(2):BR41-9. PubMed ID: 15668625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.