These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 18587127)
1. Effects of salinity on intestinal bicarbonate secretion and compensatory regulation of acid-base balance in Opsanus beta. Genz J; Taylor JR; Grosell M J Exp Biol; 2008 Jul; 211(Pt 14):2327-35. PubMed ID: 18587127 [TBL] [Abstract][Full Text] [Related]
2. The intestinal response to feeding in seawater gulf toadfish, Opsanus beta, includes elevated base secretion and increased epithelial oxygen consumption. Taylor JR; Grosell M J Exp Biol; 2009 Dec; 212(Pt 23):3873-81. PubMed ID: 19915130 [TBL] [Abstract][Full Text] [Related]
3. Acid-base responses to feeding and intestinal Cl- uptake in freshwater- and seawater-acclimated killifish, Fundulus heteroclitus, an agastric euryhaline teleost. Wood CM; Bucking C; Grosell M J Exp Biol; 2010 Aug; 213(Pt 15):2681-92. PubMed ID: 20639430 [TBL] [Abstract][Full Text] [Related]
4. Maintaining osmotic balance with an aglomerular kidney. McDonald MD; Grosell M Comp Biochem Physiol A Mol Integr Physiol; 2006 Apr; 143(4):447-58. PubMed ID: 16483812 [TBL] [Abstract][Full Text] [Related]
5. The involvement of H+-ATPase and carbonic anhydrase in intestinal HCO3- secretion in seawater-acclimated rainbow trout. Grosell M; Genz J; Taylor JR; Perry SF; Gilmour KM J Exp Biol; 2009 Jun; 212(Pt 12):1940-8. PubMed ID: 19483012 [TBL] [Abstract][Full Text] [Related]
6. Regulation of apical H⁺-ATPase activity and intestinal HCO₃⁻ secretion in marine fish osmoregulation. Guffey S; Esbaugh A; Grosell M Am J Physiol Regul Integr Comp Physiol; 2011 Dec; 301(6):R1682-91. PubMed ID: 21865541 [TBL] [Abstract][Full Text] [Related]
7. Basolateral NBCe1 plays a rate-limiting role in transepithelial intestinal HCO3- secretion, contributing to marine fish osmoregulation. Taylor JR; Mager EM; Grosell M J Exp Biol; 2010 Feb; 213(3):459-68. PubMed ID: 20086131 [TBL] [Abstract][Full Text] [Related]
8. Bioavailability of silver and its relationship to ionoregulation and silver speciation across a range of salinities in the gulf toadfish (Opsanus beta). Wood CM; McDonald MD; Walker P; Grosell M; Barimo JF; Playle RC; Walsh PJ Aquat Toxicol; 2004 Nov; 70(2):137-57. PubMed ID: 15522431 [TBL] [Abstract][Full Text] [Related]
9. Branchial carbonic anhydrase activity and ninhydrin positive substances in the Pacific white shrimp, Litopenaeus vannamei, acclimated to low and high salinities. Roy LA; Davis DA; Saoud IP; Henry RP Comp Biochem Physiol A Mol Integr Physiol; 2007 Jun; 147(2):404-11. PubMed ID: 17350299 [TBL] [Abstract][Full Text] [Related]
10. Intestinal anion exchange in teleost water balance. Grosell M; Taylor JR Comp Biochem Physiol A Mol Integr Physiol; 2007 Sep; 148(1):14-22. PubMed ID: 17142078 [TBL] [Abstract][Full Text] [Related]
11. Physiological responses to hyper-saline waters in sailfin mollies (Poecilia latipinna). Gonzalez RJ; Cooper J; Head D Comp Biochem Physiol A Mol Integr Physiol; 2005 Dec; 142(4):397-403. PubMed ID: 16257552 [TBL] [Abstract][Full Text] [Related]
12. Plasticity of osmoregulatory function in the killifish intestine: drinking rates, salt and water transport, and gene expression after freshwater transfer. Scott GR; Schulte PM; Wood CM J Exp Biol; 2006 Oct; 209(Pt 20):4040-50. PubMed ID: 17023598 [TBL] [Abstract][Full Text] [Related]
13. The role of the rectum in osmoregulation and the potential effect of renoguanylin on SLC26a6 transport activity in the Gulf toadfish (Opsanus beta). Ruhr IM; Takei Y; Grosell M Am J Physiol Regul Integr Comp Physiol; 2016 Jul; 311(1):R179-91. PubMed ID: 27030664 [TBL] [Abstract][Full Text] [Related]
14. Ocean acidification leads to counterproductive intestinal base loss in the gulf toadfish (Opsanus beta). Heuer RM; Esbaugh AJ; Grosell M Physiol Biochem Zool; 2012; 85(5):450-9. PubMed ID: 22902373 [TBL] [Abstract][Full Text] [Related]
15. Influence of salinity and organic matter on silver accumulation in Gulf toadfish (Opsanus beta). Nichols JW; Brown S; Wood CM; Walsh PJ; Playle RC Aquat Toxicol; 2006 Jun; 78(3):253-61. PubMed ID: 16675040 [TBL] [Abstract][Full Text] [Related]
16. Ca2+-driven intestinal HCO(3)(-) secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport. Cooper CA; Whittamore JM; Wilson RW Am J Physiol Regul Integr Comp Physiol; 2010 Apr; 298(4):R870-6. PubMed ID: 20130227 [TBL] [Abstract][Full Text] [Related]
17. Esophageal desalination is mediated by Na⁺, H⁺ exchanger-2 in the gulf toadfish (Opsanus beta). Esbaugh AJ; Grosell M Comp Biochem Physiol A Mol Integr Physiol; 2014 May; 171():57-63. PubMed ID: 24548910 [TBL] [Abstract][Full Text] [Related]
18. Evolutionary aspects of intestinal bicarbonate secretion in fish. Taylor JR; Grosell M Comp Biochem Physiol A Mol Integr Physiol; 2006 Apr; 143(4):523-9. PubMed ID: 16503178 [TBL] [Abstract][Full Text] [Related]
19. Ouabain-sensitive bicarbonate secretion and acid absorption by the marine teleost fish intestine play a role in osmoregulation. Grosell M; Genz J Am J Physiol Regul Integr Comp Physiol; 2006 Oct; 291(4):R1145-56. PubMed ID: 16709644 [TBL] [Abstract][Full Text] [Related]
20. Feeding and osmoregulation: dual function of the marine teleost intestine. Taylor JR; Grosell M J Exp Biol; 2006 Aug; 209(Pt 15):2939-51. PubMed ID: 16857878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]