These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 18587172)

  • 1. Characterizing temporal development of biofilm porosity using artificial neural networks.
    Veluchamy RR; Beyenal H; Lewandowski Z
    Water Sci Technol; 2008; 57(12):1867-72. PubMed ID: 18587172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of operating conditions on the adhesive strength of Pseudomonas fluorescens biofilms in tubes.
    Chen MJ; Zhang Z; Bott TR
    Colloids Surf B Biointerfaces; 2005 Jun; 43(2):61-71. PubMed ID: 15913966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growing reproducible biofilms with respect to structure and viable cell counts.
    Jackson G; Beyenal H; Rees WM; Lewandowski Z
    J Microbiol Methods; 2001 Oct; 47(1):1-10. PubMed ID: 11566221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of electrostatic interactions in cohesion of bacterial biofilms.
    Chen X; Stewart PS
    Appl Microbiol Biotechnol; 2002 Sep; 59(6):718-20. PubMed ID: 12226730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistance of biofilms to the catalase inhibitor 3-amino-1,2, 4-triazole.
    Lu X; Roe F; Jesaitis A; Lewandowski Z
    Biotechnol Bioeng; 1998 Jul; 59(2):156-62. PubMed ID: 10099326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of an electronic nose for detection of biofilms.
    Thaler ER; Huang D; Giebeig L; Palmer J; Lee D; Hanson CW; Cohen N
    Am J Rhinol; 2008; 22(1):29-33. PubMed ID: 18284856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural networks in analysis of indinavir and its degradation products retention.
    Jancić-Stojanović B; Ivanović D; Malenović A; Medenica M
    Talanta; 2009 Apr; 78(1):107-12. PubMed ID: 19174211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium dodecyl sulfate allows the persistence and recovery of biofilms of Pseudomonas fluorescens formed under different hydrodynamic conditions.
    Simões M; Simões LC; Pereira MO; Vieira MJ
    Biofouling; 2008; 24(1):35-44. PubMed ID: 18058452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudomonas fluorescens' view of the periodic table.
    Workentine ML; Harrison JJ; Stenroos PU; Ceri H; Turner RJ
    Environ Microbiol; 2008 Jan; 10(1):238-50. PubMed ID: 17894814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiology and behavior of Pseudomonas fluorescens single and dual strain biofilms under diverse hydrodynamics stresses.
    Simões M; Simões LC; Vieira MJ
    Int J Food Microbiol; 2008 Dec; 128(2):309-16. PubMed ID: 18951643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of general rate model with a new model--artificial neural network model in describing chromatographic kinetics of solanesol adsorption in packed column by macroporous resins.
    Du X; Yuan Q; Zhao J; Li Y
    J Chromatogr A; 2007 Mar; 1145(1-2):165-74. PubMed ID: 17289066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of artificial neural networks (ANN) in the development of solid dosage forms.
    Bourquin J; Schmidli H; van Hoogevest P; Leuenberger H
    Pharm Dev Technol; 1997 May; 2(2):111-21. PubMed ID: 9552437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteria, biofilm and honey: a study of the effects of honey on 'planktonic' and biofilm-embedded chronic wound bacteria.
    Merckoll P; Jonassen TØ; Vad ME; Jeansson SL; Melby KK
    Scand J Infect Dis; 2009; 41(5):341-7. PubMed ID: 19308800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Algorithms of artificial neural networks--practical application in medical science].
    Stefaniak B; Cholewiński W; Tarkowska A
    Pol Merkur Lekarski; 2005 Dec; 19(114):819-22. PubMed ID: 16521432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of biofilm reactors using natural fluorescence fingerprints.
    Wolf G; Almeida JS; Crespo JG; Reis MA
    Water Sci Technol; 2003; 47(5):161-7. PubMed ID: 12701923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Backfilling missing microbial concentrations in a riverine database using artificial neural networks.
    Chandramouli V; Brion G; Neelakantan TR; Lingireddy S
    Water Res; 2007 Jan; 41(1):217-27. PubMed ID: 17070890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quorum sensing in Pseudomonas aeruginosa biofilms.
    de Kievit TR
    Environ Microbiol; 2009 Feb; 11(2):279-88. PubMed ID: 19196266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total nitrogen and ammonia removal prediction in horizontal subsurface flow constructed wetlands: use of artificial neural networks and development of a design equation.
    Akratos CS; Papaspyros JN; Tsihrintzis VA
    Bioresour Technol; 2009 Jan; 100(2):586-96. PubMed ID: 18786824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of HPLC retention index using artificial neural networks and IGroup E-state indices.
    Albaugh DR; Hall LM; Hill DW; Kertesz TM; Parham M; Hall LH; Grant DF
    J Chem Inf Model; 2009 Apr; 49(4):788-99. PubMed ID: 19309176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of biofilm thickness variability.
    Murga R; Stewart PS; Daly D
    Biotechnol Bioeng; 1995 Mar; 45(6):503-10. PubMed ID: 18623250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.