These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18587186)

  • 1. Reductive dehalogenation of iopromide by zero-valent iron.
    Stieber M; Putschew A; Jekel M
    Water Sci Technol; 2008; 57(12):1969-75. PubMed ID: 18587186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ozonation and reductive deiodination of iopromide to reduce the environmental burden of iodinated X-ray contrast media.
    Putschew A; Miehe U; Tellez AS; Jekel M
    Water Sci Technol; 2007; 56(11):159-65. PubMed ID: 18057654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system.
    Mu Y; Radjenovic J; Shen J; Rozendal RA; Rabaey K; Keller J
    Environ Sci Technol; 2011 Jan; 45(2):782-8. PubMed ID: 21141818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of phototransformation reactions of the X-ray contrast medium iopromide under simulated solar radiation using UPLC-ESI-QqTOF-MS.
    Pérez S; Eichhorn P; Ceballos V; Barceló D
    J Mass Spectrom; 2009 Sep; 44(9):1308-17. PubMed ID: 19565538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the reactivity of commercially available zero-valent iron nanoparticles used for environmental remediation with iopromide.
    Schmid D; Micić V; Laumann S; Hofmann T
    J Contam Hydrol; 2015 Oct; 181():36-45. PubMed ID: 25708601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation mechanisms and kinetic studies for the treatment of X-ray contrast media compounds by advanced oxidation/reduction processes.
    Jeong J; Jung J; Cooper WJ; Song W
    Water Res; 2010 Aug; 44(15):4391-8. PubMed ID: 20621324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of pharmaceuticals and diagnostic agents using zero-valent iron--kinetic studies and assessment of transformation products assay.
    Stieber M; Putschew A; Jekel M
    Environ Sci Technol; 2011 Jun; 45(11):4944-50. PubMed ID: 21539306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron.
    Mu Y; Yu HQ; Zheng JC; Zhang SJ; Sheng GP
    Chemosphere; 2004 Feb; 54(7):789-94. PubMed ID: 14637335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of metabolites of the X-ray contrast agent iopromide in activated sludge using ion trap mass spectrometry.
    Pérez S; Eichhorn P; Celiz MD; Aga DS
    Anal Chem; 2006 Mar; 78(6):1866-74. PubMed ID: 16536422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abiotic reductive deiodination of iodinated organic compounds and X-ray contrast media catalyzed by free corrinoids.
    El-Athman F; Adrian L; Jekel M; Putschew A
    Chemosphere; 2019 Apr; 221():212-218. PubMed ID: 30640003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of zero-valent iron reductive transformation of the anthraquinone dye Reactive Blue 4.
    Epolito WJ; Yang H; Bottomley LA; Pavlostathis SG
    J Hazard Mater; 2008 Dec; 160(2-3):594-600. PubMed ID: 18436373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the reductive deiodination on the sorption of iodinated X-ray contrast media to filter sand and activated carbon.
    Bartels Y; Jekel M; Putschew A
    Water Res; 2024 Jul; 258():121801. PubMed ID: 38810597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AsIII oxidation by Thiomonas arsenivorans in up-flow fixed-bed reactors coupled to As sequestration onto zero-valent iron-coated sand.
    Wan J; Klein J; Simon S; Joulian C; Dictor MC; Deluchat V; Dagot C
    Water Res; 2010 Sep; 44(17):5098-108. PubMed ID: 20850864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced reduction of nitrate by zero-valent iron at elevated temperatures.
    Ahn SC; Oh SY; Cha DK
    J Hazard Mater; 2008 Aug; 156(1-3):17-22. PubMed ID: 18179870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of ultrasound-based advanced oxidation processes for the removal of X-ray contrast media.
    Ning B; Graham NJ; Lickiss PD
    Water Sci Technol; 2009; 60(9):2383-90. PubMed ID: 19901470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iodinated contrast media oxidation by nonthermal plasma: the role of iodine as a tracer.
    Gur-Reznik S; Azerrad SP; Levinson Y; Heller-Grossman L; Dosoretz CG
    Water Res; 2011 Oct; 45(16):5047-57. PubMed ID: 21802703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elimination of phenol and aromatic compounds by zero valent iron and EDTA at low temperature and atmospheric pressure.
    Sanchez I; Stüber F; Font J; Fortuny A; Fabregat A; Bengoa C
    Chemosphere; 2007 Jun; 68(2):338-44. PubMed ID: 17300830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of nitrate by resin-supported nanoscale zero-valent iron.
    Park H; Park YM; Yoo KM; Lee SH
    Water Sci Technol; 2009; 59(11):2153-7. PubMed ID: 19494454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of RDX degradation by zero-valent iron (ZVI).
    Wanaratna P; Christodoulatos C; Sidhoum M
    J Hazard Mater; 2006 Aug; 136(1):68-74. PubMed ID: 16386362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2,4,6-Trinitrotoluene reduction kinetics in aqueous solution using nanoscale zero-valent iron.
    Zhang X; Lin YM; Chen ZL
    J Hazard Mater; 2009 Jun; 165(1-3):923-7. PubMed ID: 19084332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.