These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 18587514)
1. Activity of glutathione S-transferase in the hepatopancreas is not influenced by the molting cycle in the fiddler crab, Uca pugilator. Hotard S; Zou E Bull Environ Contam Toxicol; 2008 Sep; 81(3):242-4. PubMed ID: 18587514 [TBL] [Abstract][Full Text] [Related]
2. A molecular biomarker for disruption of crustacean molting: the N-acetyl-beta-glucosaminidase mRNA in the epidermis of the fiddler crab. Meng Y; Zou E Bull Environ Contam Toxicol; 2009 May; 82(5):554-8. PubMed ID: 19156345 [TBL] [Abstract][Full Text] [Related]
3. Impacts of molt-inhibiting organochlorine compounds on epidermal ecdysteroid signaling in the fiddler crab, Uca pugilator, in vitro. Meng Y; Zou E Comp Biochem Physiol C Toxicol Pharmacol; 2009 Nov; 150(4):436-41. PubMed ID: 19567274 [TBL] [Abstract][Full Text] [Related]
4. Does crustacean ethoxyresorufin O-deethylase activity vary during the molting cycle? Hotard K; Zou E Environ Toxicol Chem; 2013 Oct; 32(10):2345-8. PubMed ID: 23843096 [TBL] [Abstract][Full Text] [Related]
5. Effects of estrogenic agents on chitobiase activity in the epidermis and hepatopancreas of the fiddler crab, Uca pugilator. Zou E; Fingerman M Ecotoxicol Environ Saf; 1999 Feb; 42(2):185-90. PubMed ID: 10051369 [TBL] [Abstract][Full Text] [Related]
6. No acute toxicity to Uca pugnax, the mud fiddler crab, following a 96-h exposure to sediment-bound permethrin. Stueckle TA; Griffin K; Foran CM Environ Toxicol; 2008 Aug; 23(4):530-8. PubMed ID: 18214939 [TBL] [Abstract][Full Text] [Related]
7. Patterns of N-acetyl-beta-glucosaminidase isoenzymes in the epidermis and hepatopancreas and induction of N-acetyl-beta-glucosaminidase activity by 20-hydroxyecdysone in the fiddler crab, Uca pugilator. Zou E; Fingerman M Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1999 Nov; 124(3):345-9. PubMed ID: 10661728 [TBL] [Abstract][Full Text] [Related]
8. Tissue-specific patterns and steady-state concentrations of ecdysteroid receptor and retinoid-X-receptor mRNA during the molt cycle of the fiddler crab, Uca pugilator. Chung AC; Durica DS; Hopkins PM Gen Comp Endocrinol; 1998 Mar; 109(3):375-89. PubMed ID: 9480745 [TBL] [Abstract][Full Text] [Related]
9. Antioxidant responses and oxidative stress after microcystin exposure in the hepatopancreas of an estuarine crab species. Pinho GL; da Rosa CM; Maciel FE; Bianchini A; Yunes JS; Proença LA; Monserrat JM Ecotoxicol Environ Saf; 2005 Jul; 61(3):353-60. PubMed ID: 15922801 [TBL] [Abstract][Full Text] [Related]
10. Chitinase activity in the epidermis of the fiddler crab, Uca pugilator, as an in vivo screen for molt-interfering xenobiotics. Zou E; Bonvillain R Comp Biochem Physiol C Toxicol Pharmacol; 2004 Dec; 139(4):225-30. PubMed ID: 15683831 [TBL] [Abstract][Full Text] [Related]
11. Effects of exposure to diethyl phthalate, 4-(tert)-octylphenol, and 2,4,5-trichlorobiphenyl on activity of chitobiase in the epidermis and hepatopancreas of the fiddler crab, Uca pugilator. Zou E; Fingerman M Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1999 Jan; 122(1):115-20. PubMed ID: 10190035 [TBL] [Abstract][Full Text] [Related]
12. Limb regeneration and molting processes under chronic methoprene exposure in the mud fiddler crab, Uca pugnax. Stueckle TA; Likens J; Foran CM Comp Biochem Physiol C Toxicol Pharmacol; 2008 Apr; 147(3):366-77. PubMed ID: 18280794 [TBL] [Abstract][Full Text] [Related]
13. Molting as a mechanism of depuration of metals in the fiddler crab, Uca pugnax. Bergey LL; Weis JS Mar Environ Res; 2007 Dec; 64(5):556-62. PubMed ID: 17590429 [TBL] [Abstract][Full Text] [Related]
14. Combined effects of temperature and copper on oxygen consumption and antioxidant responses in the mudflat fiddler crab Minuca rapax (Brachyura, Ocypodidae). Capparelli MV; Bordon IC; Araujo G; Gusso-Choueri PK; de Souza Abessa DM; McNamara JC Comp Biochem Physiol C Toxicol Pharmacol; 2019 Sep; 223():35-41. PubMed ID: 31085294 [TBL] [Abstract][Full Text] [Related]
15. Amino acid sequence of a collagenolytic protease from the hepatopancreas of the fiddler crab, Uca pugilator. Grant GA; Henderson KO; Eisen AZ; Bradshaw RA Biochemistry; 1980 Sep; 19(20):4653-9. PubMed ID: 6252953 [TBL] [Abstract][Full Text] [Related]
16. Enzymatic biomarkers in the crab Carcinus maenas from the Minho River estuary (NW Portugal) exposed to zinc and mercury. Elumalai M; Antunes C; Guilhermino L Chemosphere; 2007 Jan; 66(7):1249-55. PubMed ID: 16949639 [TBL] [Abstract][Full Text] [Related]
17. The role of Mu-type glutathione S-transferase in the mud crab (Scylla paramamosain) during ammonia stress. Cheng CH; Ma HL; Deng YQ; Feng J; Chen XL; Guo ZX Comp Biochem Physiol C Toxicol Pharmacol; 2020 Jan; 227():108642. PubMed ID: 31654827 [TBL] [Abstract][Full Text] [Related]
18. Glutathione S-transferase in the white shrimp Litopenaeus vannamei: Characterization and regulation under pH stress. Zhou J; Wang WN; Wang AL; He WY; Zhou QT; Liu Y; Xu J Comp Biochem Physiol C Toxicol Pharmacol; 2009 Aug; 150(2):224-30. PubMed ID: 19426830 [TBL] [Abstract][Full Text] [Related]
19. Biochemical responses of the shore crab (Carcinus maenas) in a eutrophic and metal-contaminated coastal system (Obidos lagoon, Portugal). Pereira P; de Pablo H; Dulce Subida M; Vale C; Pacheco M Ecotoxicol Environ Saf; 2009 Jul; 72(5):1471-80. PubMed ID: 19187961 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the mud crab (Scylla serrata) as a potential bio-monitoring species for tropical coastal marine environments of Australia. van Oosterom J; Codi King S; Negri A; Humphrey C; Mondon J Mar Pollut Bull; 2010 Feb; 60(2):283-90. PubMed ID: 19819475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]