These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18587747)

  • 21. Mathematical modeling and analysis of monoclonal antibody production by hybridoma cells.
    Zeng AP
    Biotechnol Bioeng; 1996 May; 50(3):238-47. PubMed ID: 18626951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Changes in the physiologic properties of a chemostat culture of Propionibacterium shermanii during growth limitation by a deficiency of sodium lactate].
    Ibragimova SI; Shul'govskaia EM
    Mikrobiologiia; 1979; 48(6):1017-22. PubMed ID: 93687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A kinetic analysis of hybridoma growth and metabolism in continuous suspension culture on serum-free medium.
    Hiller GW; Aeschlimann AD; Clark DS; Blanch HW
    Biotechnol Bioeng; 1991 Oct; 38(7):733-41. PubMed ID: 18600799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Logistic equations effectively model Mammalian cell batch and fed-batch kinetics by logically constraining the fit.
    Goudar CT; Joeris K; Konstantinov KB; Piret JM
    Biotechnol Prog; 2005; 21(4):1109-18. PubMed ID: 16080690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Elucidation of metabolism in hybridoma cells grown in fed-batch culture by genome-scale modeling.
    Selvarasu S; Wong VV; Karimi IA; Lee DY
    Biotechnol Bioeng; 2009 Apr; 102(5):1494-504. PubMed ID: 19048615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutamine-limited batch hybridoma growth and antibody production: experiment and model.
    Dalili M; Sayles GD; Ollis DF
    Biotechnol Bioeng; 1990 Jun; 36(1):74-82. PubMed ID: 18592611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A three-phase pattern in growth, monoclonal antibody production, and metabolite exchange in a hybridoma bioreactor culture.
    Bushell ME; Bell SL; Scott MF; Snell K; Spier RE; Wardell JN; Sanders PG
    Biotechnol Bioeng; 1993 Jun; 42(1):133-9. PubMed ID: 18609657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mathematical descriptions of hybridoma culture kinetics: II. The relationship between thiol chemistry and the degradation of serum activity.
    Glacken MW; Adema E; Sinskey AJ
    Biotechnol Bioeng; 1989 Jan; 33(4):440-50. PubMed ID: 18587935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell cycle kinetics and monoclonal antibody productivity of hybridoma cells during perfusion culture.
    Park SH; Ryu DD
    Biotechnol Bioeng; 1994 Jul; 44(3):361-7. PubMed ID: 18618753
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal design of metabolic flux analysis experiments for anchorage-dependent mammalian cells using a cellular automaton model.
    Meadows AL; Roy S; Clark DS; Blanch HW
    Biotechnol Bioeng; 2007 Sep; 98(1):221-9. PubMed ID: 17657779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correlation between steady-state cell concentration and cell death of hybridoma cultures in chemostat.
    Lee YK; Yap PK; Teoh AP
    Biotechnol Bioeng; 1995 Jan; 45(1):18-26. PubMed ID: 18623047
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modified monoclonal antibody production kinetics kappa/gamma mRNA levels, and metabolic activities in a murine hybridoma selected by continuous Culture.
    Merten OW; Moeurs D; Keller H; Leno M; Palfi GE; Cabanié L; Couvé E
    Biotechnol Bioeng; 1994 Sep; 44(6):753-64. PubMed ID: 18618836
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quasi steady state growth of Lactococcus lactis in glucose-limited acceleration stat (A-stat) cultures.
    Adamberg K; Lahtvee PJ; Valgepea K; Abner K; Vilu R
    Antonie Van Leeuwenhoek; 2009 Mar; 95(3):219-26. PubMed ID: 19184516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-situ removal of ammonium and lactate through electrical means for hybridoma cultures.
    Chang YH; Grodzinsky AJ; Wang DI
    Biotechnol Bioeng; 1995 Aug; 47(3):308-18. PubMed ID: 18623406
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemostat-cultivated Escherichia coli at high dilution rate: multiple steady states and drift.
    Majewski RA; Domach MM
    Biotechnol Bioeng; 1990 Jun; 36(2):179-90. PubMed ID: 18595066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cybernetic modeling and regulation of metabolic pathways in multiple steady states of hybridoma cells.
    Guardia MJ; Gambhir A; Europa AF; Ramkrishna D; Hu WS
    Biotechnol Prog; 2000; 16(5):847-53. PubMed ID: 11027180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intracellular ATP and total adenylate concentrations are critical predictors of reovirus productivity from Vero cells.
    Burgener A; Coombs K; Butler M
    Biotechnol Bioeng; 2006 Jul; 94(4):667-79. PubMed ID: 16570315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prevention of hybridoma cell death by bcl-2 during suboptimal culture conditions.
    Simpson NH; Milner AE; Al-Rubeai M
    Biotechnol Bioeng; 1997 Apr; 54(1):1-16. PubMed ID: 18634067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous growth kinetics of Candida utilis in pineapple cannery effluent.
    Prior BA
    Biotechnol Bioeng; 1984 Jul; 26(7):748-52. PubMed ID: 18553441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maximization of steady-state bacterial production in a chemostat with pH and substrate control.
    Spitzer DW
    Biotechnol Bioeng; 1976 Feb; 18(2):167-78. PubMed ID: 3237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.