BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 18587827)

  • 21. Reductive Dissolution of Fe(III) (Hydr)oxides by Cysteine: Kinetics and Mechanism.
    Amirbahman A; Sigg L; Gunten U
    J Colloid Interface Sci; 1997 Oct; 194(1):194-206. PubMed ID: 9367598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron exchange between Fe(II)-horse spleen ferritin and Co(III)/Mn(III) reconstituted horse spleen and Azotobacter vinelandii ferritins.
    Zhang B; Harb JN; Davis RC; Choi S; Kim JW; Miller T; Chu SH; Watt GD
    Biochemistry; 2006 May; 45(18):5766-74. PubMed ID: 16669620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.
    Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M
    Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradation of nitrilotriacetic acid (NTA) and ferric-NTA complex by aerobic microbial granules.
    Nancharaiah YV; Schwarzenbeck N; Mohan TV; Narasimhan SV; Wilderer PA; Venugopalan VP
    Water Res; 2006 May; 40(8):1539-46. PubMed ID: 16600324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unravelling the intrinsic features of NO binding to iron(II)- and iron(III)-hemes.
    Chiavarino B; Crestoni ME; Fornarini S; Rovira C
    Inorg Chem; 2008 Sep; 47(17):7792-801. PubMed ID: 18681420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide.
    Xue X; Hanna K; Deng N
    J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential for microbially mediated redox transformations and mobilization of arsenic in uncontaminated soils.
    Yamamura S; Watanabe M; Yamamoto N; Sei K; Ike M
    Chemosphere; 2009 Sep; 77(2):169-74. PubMed ID: 19716583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Observation of redox-induced electron transfer and spin crossover for dinuclear cobalt and iron complexes with the 2,5-di-tert-butyl-3,6-dihydroxy-1,4-benzoquinonate bridging ligand.
    Min KS; Dipasquale AG; Rheingold AL; White HS; Miller JS
    J Am Chem Soc; 2009 May; 131(17):6229-36. PubMed ID: 19358538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Micromodel investigation of transport effect on the kinetics of reductive dissolution of hematite.
    Zhang C; Liu C; Shi Z
    Environ Sci Technol; 2013 May; 47(9):4131-9. PubMed ID: 23484541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of reaction-product formation on the reductive dissolution of MnO2 by Fe(II).
    Villinski JE; Saiers JE; Conklin MH
    Environ Sci Technol; 2003 Dec; 37(24):5589-96. PubMed ID: 14717168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioextraction (reductive dissolution) of iron from low-grade iron ores. Fundamental and applied studies.
    DiChristina TJ
    Ann N Y Acad Sci; 1994 May; 721():440-9. PubMed ID: 8010693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of Goethite.
    Wiederhold JG; Kraemer SM; Teutsch N; Borer PM; Halliday AN; Kretzschmar R
    Environ Sci Technol; 2006 Jun; 40(12):3787-93. PubMed ID: 16830543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes.
    Praneeth VK; Paulat F; Berto TC; George SD; Näther C; Sulok CD; Lehnert N
    J Am Chem Soc; 2008 Nov; 130(46):15288-303. PubMed ID: 18942830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of hematite/Fe(II) systems with cement/Fe(II) systems in reductively dechlorinating trichloroethylene.
    Kim HS; Kang WH; Kim M; Park JY; Hwang I
    Chemosphere; 2008 Oct; 73(5):813-9. PubMed ID: 18597815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracellular precipitation of Pb by Shewanella putrefaciens CN32 during the reductive dissolution of Pb-jarosite.
    Smeaton CM; Fryer BJ; Weisener CG
    Environ Sci Technol; 2009 Nov; 43(21):8086-91. PubMed ID: 19924927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reductive Transformation of Fe(III) (oxyhydr)Oxides by Mesophilic Homoacetogens in the Genus
    Igarashi K; Kato S
    Front Microbiol; 2021; 12():600808. PubMed ID: 33633701
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of metal displacements in a saddle distorted macrocycle: synthesis, structure, and properties of high-spin Fe(III) porphyrins and implications for the hemoproteins.
    Patra R; Chaudhary A; Ghosh SK; Rath SP
    Inorg Chem; 2008 Sep; 47(18):8324-35. PubMed ID: 18700752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species.
    Wiley B; Sun Y; Xia Y
    Langmuir; 2005 Aug; 21(18):8077-80. PubMed ID: 16114903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitrite reduction with hydrous ferric oxide and Fe(II): stoichiometry, rate, and mechanism.
    Tai YL; Dempsey BA
    Water Res; 2009 Feb; 43(2):546-52. PubMed ID: 19081595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.