These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18587827)

  • 61. Reductive dissolution of As(V)-bearing Fe(III)-precipitates formed by Fe(II) oxidation in aqueous solutions.
    Voegelin A; Senn AC; Kaegi R; Hug SJ
    Geochem Trans; 2019 Mar; 20(1):2. PubMed ID: 30903325
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of ferrous iron on arsenate sorption to amorphous ferric hydroxide.
    Mukiibi M; Ela WP; Sáez AE
    Ann N Y Acad Sci; 2008 Oct; 1140():335-45. PubMed ID: 18991933
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Catalase-peroxidase activity of iron(III)-TAML activators of hydrogen peroxide.
    Ghosh A; Mitchell DA; Chanda A; Ryabov AD; Popescu DL; Upham EC; Collins GJ; Collins TJ
    J Am Chem Soc; 2008 Nov; 130(45):15116-26. PubMed ID: 18928252
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Comparison of electron-transfer rates for metal- versus ring-centered redox processes of porphyrins in monolayers on Au(111).
    Jiao J; Schmidt I; Taniguchi M; Lindsey JS; Bocian DF
    Langmuir; 2008 Oct; 24(20):12047-53. PubMed ID: 18823081
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of inorganic ligands and hydrogen peroxide on ThO2 dissolution. Behaviour of Th0.87Pu0.13O2 during leaching test.
    Hubert S; Heisbourg G; Dacheux N; Moisy P
    Inorg Chem; 2008 Mar; 47(6):2064-73. PubMed ID: 18260624
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of NO2(-) and NO3(-) on the Fe(III)EDTA reduction in a chemical absorption-biological reduction integrated NO(x) removal system.
    Zhang SH; Cai LL; Liu Y; Shi Y; Li W
    Appl Microbiol Biotechnol; 2009 Mar; 82(3):557-63. PubMed ID: 19137285
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Characterizing the reactivity of metallic iron upon methylene blue discoloration in Fe0/MnO2/H2O systems.
    Noubactep C
    J Hazard Mater; 2009 Sep; 168(2-3):1613-6. PubMed ID: 19329252
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Aluminosilicate dissolution kinetics: a general stochastic model.
    Zhang L; Lüttge A
    J Phys Chem B; 2008 Feb; 112(6):1736-42. PubMed ID: 18211053
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Influence of Na2S on the degradation kinetics of CCl4 in the presence of very pure iron.
    Hansson EB; Odziemkowski MS; Gillham RW
    J Contam Hydrol; 2008 Jun; 98(3-4):128-34. PubMed ID: 18508159
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biogeochemical cycling of iron oxides in the rhizosphere of plants grown on ferruginous duricrust (canga).
    Paz A; Gagen EJ; Levett A; Zhao Y; Kopittke PM; Southam G
    Sci Total Environ; 2020 Apr; 713():136637. PubMed ID: 31958731
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Pyrite oxidation in the presence of hematite and alumina: II. Effects on the cathodic and anodic half-cell reactions.
    Tabelin CB; Veerawattananun S; Ito M; Hiroyoshi N; Igarashi T
    Sci Total Environ; 2017 Mar; 581-582():126-135. PubMed ID: 28057346
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy.
    Lu Y; Geng J; Wang K; Zhang W; Ding W; Zhang Z; Xie S; Dai H; Chen FR; Sui M
    ACS Nano; 2017 Aug; 11(8):8018-8025. PubMed ID: 28738154
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Rapid Ferric Transformation by Reductive Dissolution of Schwertmannite for Highly Efficient Catalytic Degradation of Rhodamine B.
    Ran J; Yu B
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29987194
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dissolution of Al-Substituted Goethite in the Presence of Ferrichrome and Enterobactin at pH 6.5.
    Dubbin WE; Bullough F
    Aquat Geochem; 2017; 23(1):61-74. PubMed ID: 32355452
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Reduction of crystalline iron(III) oxyhydroxides using hydroquinone: Influence of phase and particle size.
    Anschutz AJ; Penn RL
    Geochem Trans; 2005; 6(3):60. PubMed ID: 35412767
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Sequential extraction analysis of heavy metals in sediments of variable composition using nitrilotriacetic acid to counteract resorption.
    Howard JL; Vandenbrink WJ
    Environ Pollut; 1999 Sep; 106(3):285-92. PubMed ID: 15093024
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Exploring the mineral-water interface: reduction and reaction kinetics of single hematite (α-Fe
    Shimizu K; Tschulik K; Compton RG
    Chem Sci; 2016 Feb; 7(2):1408-1414. PubMed ID: 29910899
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Tracking surface evolution using ligand-assisted dissolution of cobalt oxyhydroxide.
    Myers JC; Penn RL
    Langmuir; 2011 Jan; 27(1):158-65. PubMed ID: 21141847
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Development of molecular cluster models to probe pyrite surface reactivity.
    Kour M; Taborosi A; Boyd ES; Szilagyi RK
    J Comput Chem; 2023 Dec; 44(32):2486-2500. PubMed ID: 37650712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.