These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Optimal nonsingular control of fed-batch fermentation. Kurtanjek Z Biotechnol Bioeng; 1991 Apr; 37(9):814-23. PubMed ID: 18600681 [TBL] [Abstract][Full Text] [Related]
6. A population balance model of enzymatic lysis of microbial cells. Hunter JB; Asenjo JA Biotechnol Bioeng; 1990 Jan; 35(1):31-42. PubMed ID: 18588229 [TBL] [Abstract][Full Text] [Related]
7. Kinetics of enzymatic lysis and disruption of yeast cells: I. Evaluation of two lytic systems with different properties. Hunter JB; Asenjo JA Biotechnol Bioeng; 1987 Sep; 30(4):471-80. PubMed ID: 18581424 [TBL] [Abstract][Full Text] [Related]
8. A structured mechanistic model of the kinetics of enzymatic lysis and disruption of yeast cells. Hunter JB; Asenjo JA Biotechnol Bioeng; 1988 Jun; 31(9):929-43. PubMed ID: 18584701 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and regulation of extracellular beta (1-3) glucanase and protease by cytophaga sp. In batch and continuous culture. Andrews BA; Asenjo JA Biotechnol Bioeng; 1986 Sep; 28(9):1366-75. PubMed ID: 18561226 [TBL] [Abstract][Full Text] [Related]
10. Simple nonsingular control approach to fed-batch fermentation optimization. Modak JM; Lim HC Biotechnol Bioeng; 1989 Jan; 33(1):11-5. PubMed ID: 18587838 [TBL] [Abstract][Full Text] [Related]
11. Continuous-culture studies of synthesis and regulation of extracellular beta(1-3) glucanase and protease enzymes from Oerskovia xanthineolytica. Andrews BA; Asenjo JA Biotechnol Bioeng; 1987 Oct; 30(5):628-37. PubMed ID: 18581450 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of enzymatic lysis and disruption of yeast cells: II. A simple model of lysis kinetics. Hunter JB; Asenjo JA Biotechnol Bioeng; 1987 Sep; 30(4):481-90. PubMed ID: 18581425 [TBL] [Abstract][Full Text] [Related]
13. Model-based data evaluation of polyhydroxybutyrate producing mixed microbial cultures in aerobic sequencing batch and fed-batch reactors. Johnson K; Kleerebezem R; van Loosdrecht MC Biotechnol Bioeng; 2009 Sep; 104(1):50-67. PubMed ID: 19472301 [TBL] [Abstract][Full Text] [Related]
15. Optimization strategies based on sequential quadratic programming applied for a fermentation process for butanol production. Pinto Mariano A; Bastos Borba Costa C; de Franceschi de Angelis D; Maugeri Filho F; Pires Atala DI; Wolf Maciel MR; Maciel Filho R Appl Biochem Biotechnol; 2009 Nov; 159(2):366-81. PubMed ID: 19082763 [TBL] [Abstract][Full Text] [Related]
16. Hierarchical optimal control of large-scale nonlinear chemical processes. Ramezani MH; Sadati N ISA Trans; 2009 Jan; 48(1):38-47. PubMed ID: 18838133 [TBL] [Abstract][Full Text] [Related]
17. Monte Carlo simulation of the enzymatic lysis of yeast. Prokopakis GJ; Liu LC Biotechnol Bioeng; 1997 Feb; 53(3):290-5. PubMed ID: 18633983 [TBL] [Abstract][Full Text] [Related]
18. Optimal production of glutathione by controlling the specific growth rate of yeast in fed-batch culture. Shimizu H; Araki K; Shioya S; Suga K Biotechnol Bioeng; 1991 Jun; 38(2):196-205. PubMed ID: 18600750 [TBL] [Abstract][Full Text] [Related]
19. On-line evolutionary optimization of an industrial fed-batch yeast fermentation process. Yüzgeç U; Türker M; Hocalar A ISA Trans; 2009 Jan; 48(1):79-92. PubMed ID: 18849027 [TBL] [Abstract][Full Text] [Related]
20. The influence of precipitation reactor configuration on the centrifugal recovery of isoelectric soya protein precipitate. Bell DJ; Dunnill P Biotechnol Bioeng; 1982 Nov; 24(11):2319-36. PubMed ID: 18546209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]