BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 18587872)

  • 21. Biodegradation of phenol at high initial concentration by Alcaligenes faecalis.
    Jiang Y; Wen J; Bai J; Jia X; Hu Z
    J Hazard Mater; 2007 Aug; 147(1-2):672-6. PubMed ID: 17597295
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradation of phenol and m-cresol by Candida albicans PDY-07 under anaerobic condition.
    Wang G; Wen J; Li H; Qiu C
    J Ind Microbiol Biotechnol; 2009 Jun; 36(6):809-14. PubMed ID: 19319585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of phenol and cresols at low temperatures using a suspended-carrier biofilm process.
    Perron N; Welander U
    Chemosphere; 2004 Apr; 55(1):45-50. PubMed ID: 14720545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts.
    Bergauer P; Fonteyne PA; Nolard N; Schinner F; Margesin R
    Chemosphere; 2005 May; 59(7):909-18. PubMed ID: 15823324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradation of phenol and m-cresol by mutated Candida tropicalis.
    Jiang Y; Cai X; Wu D; Ren N
    J Environ Sci (China); 2010; 22(4):621-6. PubMed ID: 20617741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of biodegradation of phenol and homologous compounds by Pseudomonas vesicularis and Staphylococcus sciuri strains.
    Mrozik A; Labuzek S
    Acta Microbiol Pol; 2002; 51(4):367-78. PubMed ID: 12708825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradation of cresols by phenol-acclimated aerobic granules.
    Lee DJ; Ho KL; Chen YY
    Appl Microbiol Biotechnol; 2011 Jan; 89(1):209-15. PubMed ID: 20852993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of organic compounds by a biofilm supported on GAC: modelling of batch and column data.
    Quintelas C; Silva B; Figueiredo H; Tavares T
    Biodegradation; 2010 Jun; 21(3):379-92. PubMed ID: 19882356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of ascorbate oxidase by phenolic compounds. Enzymatic and spectroscopic studies.
    Gaspard S; Monzani E; Casella L; Gullotti M; Maritano S; Marchesini A
    Biochemistry; 1997 Apr; 36(16):4852-9. PubMed ID: 9125505
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acinetobacter radioresistens metabolizing aromatic compounds. 1. Optimization of the operative conditions for phenol degradation.
    Pessione E; Bosco F; Specchia V; Giunta C
    Microbios; 1996; 88(357):213-21. PubMed ID: 9178532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial analysis and enrichment of anaerobic phenol and p-cresol degrading consortia with addition of AQDS.
    Chi M; Su X; Sun X; Xu Y; Wang X; Qiu Y
    Water Sci Technol; 2021 Aug; 84(3):683-696. PubMed ID: 34388127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous removal of 2-chlorophenol, phenol, p-cresol and p-hydroxybenzaldehyde under nitrifying conditions: kinetic study.
    Silva CD; Gómez J; Beristain-Cardoso R
    Bioresour Technol; 2011 Jun; 102(11):6464-8. PubMed ID: 21504846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fate and effect of quaternary ammonium compounds on a mixed methanogenic culture.
    Tezel U; Pierson JA; Pavlostathis SG
    Water Res; 2006 Nov; 40(19):3660-8. PubMed ID: 16899271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of alkyl- and alkoxy-substituted simple phenolic compounds to human serum proteins.
    Ogata N; Shibata T
    Res Commun Mol Pathol Pharmacol; 2000; 107(1-2):167-73. PubMed ID: 11334365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of the acetoclastic methanogenic activity by phenol and alkyl phenols.
    Olguin-Lora P; Puig-Grajales L; Razo-Flores E
    Environ Technol; 2003 Aug; 24(8):999-1006. PubMed ID: 14509391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Four types of attenuation of phenol and cresols in microcosms under simulated marine conditions: A kinetic study.
    Wang Y; Meng F; Lin Y; Duan W; Liu Q
    Chemosphere; 2017 Oct; 185():595-601. PubMed ID: 28719879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of aromatic compounds on the work of activated sludge.
    Bieszkiewicz E; Fiutowska L
    Acta Microbiol Pol; 1991; 40(3-4):177-85. PubMed ID: 1726619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation of phenol at high initial concentrations in two-phase partitioning batch and fed-batch bioreactors.
    Collins LD; Daugulis AJ
    Biotechnol Bioeng; 1997 Jul; 55(1):155-62. PubMed ID: 18636453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization.
    van Leerdam RC; Bonilla-Salinas M; de Bok FA; Bruning H; Lens PN; Stams AJ; Janssen AJ
    Biotechnol Bioeng; 2008 Nov; 101(4):691-701. PubMed ID: 18814290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uptake and localization of gaseous phenol and p-cresol in plant leaves.
    Beattie GA; Seibel JR
    Chemosphere; 2007 Jun; 68(3):528-36. PubMed ID: 17280709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.