These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 18587881)

  • 41. Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus niger.
    Ikeda Y; Park EY; Okuda N
    Bioresour Technol; 2006 May; 97(8):1030-5. PubMed ID: 15979872
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells.
    Kilonzo P; Margaritis A; Bergougnou M
    J Biotechnol; 2009 Aug; 143(1):60-8. PubMed ID: 19539672
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gluconic acid production by Aspergillus niger mutant ORS-4.410 in submerged and solid state surface fermentation.
    Singh OV; Sharma A; Singh RP
    Indian J Exp Biol; 2001 Jul; 39(7):691-6. PubMed ID: 12019764
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Batch and fed-batch production of coenzyme Q10 in recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans.
    Park YC; Kim SJ; Choi JH; Lee WH; Park KM; Kawamukai M; Ryu YW; Seo JH
    Appl Microbiol Biotechnol; 2005 Apr; 67(2):192-6. PubMed ID: 15459799
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of sporulation/immobilization method and its application for the continuous production of cyclosporin A by Tolypocladium inflatum.
    Lee TH; Chun GT; Chang YK
    Biotechnol Prog; 1997; 13(5):546-50. PubMed ID: 9376111
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [A comparative study of the formation of 2-keto-D-gluconic acid by free and immobilized cells of Pseudomonas putida].
    Voloshenko MI; Disler EN; Koshcheenko KA
    Prikl Biokhim Mikrobiol; 1988; 24(6):779-83. PubMed ID: 3249741
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation.
    Merfort M; Herrmann U; Ha SW; Elfari M; Bringer-Meyer S; Görisch H; Sahm H
    Biotechnol J; 2006 May; 1(5):556-63. PubMed ID: 16892291
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crosslinked enzyme crystals of glucoamylase as a potent catalyst for biotransformations.
    Abraham TE; Joseph JR; Bindhu LB; Jayakumar KK
    Carbohydr Res; 2004 Apr; 339(6):1099-104. PubMed ID: 15063197
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Continuous production of L-tryptophan from indole and L-serine by immobilized Escherichia coli cells.
    Bang WG; Behrendt U; Lang S; Wagner F
    Biotechnol Bioeng; 1983 Apr; 25(4):1013-25. PubMed ID: 18548716
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetics of growth and elemental sulfur oxidation in batch culture of thiobacillus ferrooxidans.
    Konishi Y; Takasaka Y; Asai S
    Biotechnol Bioeng; 1994 Sep; 44(6):667-73. PubMed ID: 18618826
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gluconic acid production by an mobilized glucose oxidase reactor with electrochemical regeneration of an artificial electron acceptor.
    Bourdillon C; Lortie R; Laval JM
    Biotechnol Bioeng; 1988 Apr; 31(6):553-8. PubMed ID: 18584645
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient biosynthesis of 2-keto-D-gluconic acid by fed-batch culture of metabolically engineered
    Zeng W; Cai W; Liu L; Du G; Chen J; Zhou J
    Synth Syst Biotechnol; 2019 Sep; 4(3):134-141. PubMed ID: 31384676
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A study of acetic acid production by immobilized Acetobacter Cells: Oxygen transfer.
    Ghommidh C; Navarro JM; Durand G
    Biotechnol Bioeng; 1982 Mar; 24(3):605-17. PubMed ID: 18546351
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Continuous conversion of sucrose to fructose and gluconic acid by immobilized yeast cell multienzyme complex.
    D'Souza SF; Nadkarni GB
    Biotechnol Bioeng; 1980 Oct; 22(10):2179-2189. PubMed ID: 29345759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A study of acetic acid production by immobilized Acetobacter cells: Product inhibition effects.
    Ghommidh C; Navarro JM; Messing RA
    Biotechnol Bioeng; 1982 Sep; 24(9):1991-9. PubMed ID: 18548494
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Palladium nanoparticle loaded β-cyclodextrin monolith as a flow reactor for concentration enrichment and conversion of pollutants based on molecular recognition.
    Mizuno S; Asoh TA; Takashima Y; Harada A; Uyama H
    Chem Commun (Camb); 2020 Nov; 56(92):14408-14411. PubMed ID: 33146169
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bioacetylation of seaweed alginate.
    Lee JW; Day DF
    Appl Environ Microbiol; 1995 Feb; 61(2):650-5. PubMed ID: 16534934
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fast and highly efficient SO2 capture by TMG immobilized on hierarchical micro-meso-macroporous AlPO-5/cordierite honeycomb ceramic materials.
    Xu J; Zha X; Wu Y; Ke Q; Yu W
    Chem Commun (Camb); 2016 May; 52(38):6367-70. PubMed ID: 26941121
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Production of Gluconic Acid and 2-Keto-Gluconic Acid from Glucose by Species of Pseudomonas and Phytomonas.
    Lockwood LB; Tabenkin B; Ward GE
    J Bacteriol; 1941 Jul; 42(1):51-61. PubMed ID: 16560442
    [No Abstract]   [Full Text] [Related]  

  • 60. Characterization of production of free gluconic acid by Gluconobacter suboxydans adsorbed on ceramic honeycomb monolith.
    Shiraishi F; Kawakami K; Kono S; Tamura A; Tsuruta S; Kusunoki K
    Biotechnol Bioeng; 1989 May; 33(11):1413-8. PubMed ID: 18587881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.