These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 18587989)

  • 1. The mechanism of cobalt biosorption.
    Kuyucak N; Volesky B
    Biotechnol Bioeng; 1989 Feb; 33(7):823-31. PubMed ID: 18587989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of uranium biosorption by Rhizopus arrhizus.
    Tsezos M; Volesky B
    Biotechnol Bioeng; 1982 Feb; 24(2):385-401. PubMed ID: 18546310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosorption of cadmium by biomass of marine algae.
    Holan ZR; Volesky B; Prasetyo I
    Biotechnol Bioeng; 1993 Apr; 41(8):819-25. PubMed ID: 18609626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desorption of cobalt-laden algal biosorbent.
    Kuyucak N; Volesky B
    Biotechnol Bioeng; 1989 Feb; 33(7):815-22. PubMed ID: 18587988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of acetone-washed yeast biomass functional groups involved in lead biosorption.
    Ashkenazy R; Gottlieb L; Yannai S
    Biotechnol Bioeng; 1997 Jul; 55(1):1-10. PubMed ID: 18636438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of Cr3+ from aqueous solution by biosorption with aerobic granules.
    Yao L; Ye ZF; Tong MP; Lai P; Ni JR
    J Hazard Mater; 2009 Jun; 165(1-3):250-5. PubMed ID: 19013022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the biosorption characteristics of lead(II) ions onto Symphoricarpus albus: Batch and dynamic flow studies.
    Akar ST; Gorgulu A; Anilan B; Kaynak Z; Akar T
    J Hazard Mater; 2009 Jun; 165(1-3):126-33. PubMed ID: 19004546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study.
    Vimala R; Das N
    J Hazard Mater; 2009 Aug; 168(1):376-82. PubMed ID: 19285798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thorium biosorption by Aspergillus fumigatus, a filamentous fungal biomass.
    Bhainsa KC; D'Souza SF
    J Hazard Mater; 2009 Jun; 165(1-3):670-6. PubMed ID: 19036508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions.
    Gupta VK; Rastogi A
    J Hazard Mater; 2009 Apr; 163(1):396-402. PubMed ID: 18691812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency of succinylated-olive stone biosorbent on the removal of cadmium ions from aqueous solutions.
    Aziz A; Elandaloussi el H; Belhalfaoui B; Ouali MS; De Ménorval LC
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):192-8. PubMed ID: 19553093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced biosorption of mercury(II) and cadmium(II) by cold-induced hydrophobic exobiopolymer secreted from the psychrotroph Pseudomonas fluorescens BM07.
    Zamil SS; Choi MH; Song JH; Park H; Xu J; Chi KW; Yoon SC
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):531-44. PubMed ID: 18679675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pH on the binding mechanisms in biosorption of Reactive Orange 16 by Corynebacterium glutamicum.
    Won SW; Yun HJ; Yun YS
    J Colloid Interface Sci; 2009 Mar; 331(1):83-9. PubMed ID: 19062035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics, equilibrium and mechanism of Cd2+ removal from aqueous solution by mungbean husk.
    Saeed A; Iqbal M; Höll WH
    J Hazard Mater; 2009 Sep; 168(2-3):1467-75. PubMed ID: 19386413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uranium and thorium sequestration by a Pseudomonas sp.: mechanism and chemical characterization.
    Kazy SK; D'Souza SF; Sar P
    J Hazard Mater; 2009 Apr; 163(1):65-72. PubMed ID: 18692958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosorptive removal of mercury(II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: kinetic and equilibrium studies.
    Tuzen M; Sari A; Mendil D; Soylak M
    J Hazard Mater; 2009 Sep; 169(1-3):263-70. PubMed ID: 19380200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-Dependent syntheses, structural and spectroscopic characterization, and chemical transformations of aqueous Co(II)-quinate complexes: an effort to delve into the structural speciation of the binary Co(II)-quinic acid system.
    Menelaou M; Konstantopai A; Mateescu C; Zhao H; Drouza C; Lalioti N; Salifoglou A
    Inorg Chem; 2009 Sep; 48(17):8092-105. PubMed ID: 19658385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosorption characteristics of phosphates from aqueous solution onto Phoenix dactylifera L. date palm fibers.
    Riahi K; Thayer BB; Mammou AB; Ammar AB; Jaafoura MH
    J Hazard Mater; 2009 Oct; 170(2-3):511-9. PubMed ID: 19497666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: Effect of chemical composition.
    Pejic B; Vukcevic M; Kostic M; Skundric P
    J Hazard Mater; 2009 May; 164(1):146-53. PubMed ID: 18778893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosorption of nickel(II) from aqueous solution by Aspergillus niger: response surface methodology and isotherm study.
    Amini M; Younesi H; Bahramifar N
    Chemosphere; 2009 Jun; 75(11):1483-91. PubMed ID: 19285703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.