These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 18588154)

  • 1. Kinetics, equilibria, and modeling of the formation of oligosaccharides from D-glucose with Aspergillus niger glucoamylases I and II.
    Nikolov ZL; Meagher MM; Reilly PJ
    Biotechnol Bioeng; 1989 Aug; 34(5):694-704. PubMed ID: 18588154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of the hydrolysis of di- and trisaccharides with Aspergillus niger glucoamylases I and II.
    Meagher MM; Reilly PJ
    Biotechnol Bioeng; 1989 Aug; 34(5):689-93. PubMed ID: 18588153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate binding mechanism of Glu180-->Gln, Asp176-->Asn, and wild-type glucoamylases from Aspergillus niger.
    Christensen U; Olsen K; Stoffer BB; Svensson B
    Biochemistry; 1996 Nov; 35(47):15009-18. PubMed ID: 8942667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of formation of maltose and isomaltose through condensation of glucose by glucoamylase.
    Adachi S; Ueda Y; Hashimoto K
    Biotechnol Bioeng; 1984 Feb; 26(2):121-7. PubMed ID: 18551697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subsite mapping of Aspergillus niger glucoamylases I and II with malto- and isomaltooligosaccharides.
    Meagher MM; Nikolov ZL; Reilly PJ
    Biotechnol Bioeng; 1989 Aug; 34(5):681-8. PubMed ID: 18588152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimizing nonproductive substrate binding: a new look at glucoamylase subsite affinities.
    Natarajan SK; Sierks MR
    Biochemistry; 1997 Dec; 36(48):14946-55. PubMed ID: 9398219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Di- and oligosaccharide substrate specificities and subsite binding energies of pig intestinal glucoamylase-maltase.
    Günther S; Heymann H
    Arch Biochem Biophys; 1998 Jun; 354(1):111-6. PubMed ID: 9633604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary investigation on the action modes of an oligosaccharide-producing multifunctional amylase.
    Wang Y; Li F; Zhang Y
    Appl Biochem Biotechnol; 2010 Apr; 160(7):1955-66. PubMed ID: 19662349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic mechanism of glucoamylase probed by mutagenesis in conjunction with hydrolysis of alpha-D-glucopyranosyl fluoride and maltooligosaccharides.
    Sierks MR; Svensson B
    Biochemistry; 1996 Feb; 35(6):1865-71. PubMed ID: 8639668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of condensation of glucose into maltose and isomaltose in hydrolysis of starch by glucoamylase.
    Shiraishi F; Kawakami K; Kusunoki K
    Biotechnol Bioeng; 1985 Apr; 27(4):498-502. PubMed ID: 18553698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of mutation of Asn694 in Aspergillus niger α-glucosidase on hydrolysis and transglucosylation.
    Ma M; Okuyama M; Sato M; Tagami T; Klahan P; Kumagai Y; Mori H; Kimura A
    Appl Microbiol Biotechnol; 2017 Aug; 101(16):6399-6408. PubMed ID: 28688044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transglucosidic reactions of the Aspergillus niger family 3 beta-glucosidase: qualitative and quantitative analyses and evidence that the transglucosidic rate is independent of pH.
    Seidle HF; Huber RE
    Arch Biochem Biophys; 2005 Apr; 436(2):254-64. PubMed ID: 15797238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of isomaltose and maltose to the glucoamylase from Aspergillus niger, as studied by fluorescence spectrophotometry and steady-state kinetics.
    Ohnishi M; Matsumoto T; Yamanaka T; Hiromi K
    Carbohydr Res; 1990 Sep; 204():187-96. PubMed ID: 2279245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of nutraceutical iso-oligosaccharides by multiple forms of transferase produced by Aspergillus foetidus.
    Wang XD; Rakshit SK
    Nahrung; 2000 Jun; 44(3):207-10. PubMed ID: 10907244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase.
    Kramhøft B; Bak-Jensen KS; Mori H; Juge N; Nøhr J; Svensson B
    Biochemistry; 2005 Feb; 44(6):1824-32. PubMed ID: 15697208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and energetics of the glucoamylase-isomaltose transition-state complex probed by using modeling and deoxygenated substrates coupled with site-directed mutagenesis.
    Frandsen TP; Stoffer BB; Palcic MM; Hof S; Svensson B
    J Mol Biol; 1996 Oct; 263(1):79-89. PubMed ID: 8890914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the action of glucoamylase and glucosyltransferase on D-glucose, maltose, and malto-oligosaccharides.
    Pazur JH; Cepure A; Okada S; Forsberg LS
    Carbohydr Res; 1977 Sep; 58(1):193-202. PubMed ID: 334366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic model for the hydrolysis and synthesis of maltose, isomaltose, and maltotriose by glucoamylase.
    Beschkov V; Marc A; Engasser JM
    Biotechnol Bioeng; 1984 Jan; 26(1):22-6. PubMed ID: 18551581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of enzyme-substrate and enzyme-product complexes in the catalytic mechanism of glucoamylase from Aspergillus awamori.
    Natarajan SK; Sierks MR
    Biochemistry; 1996 Dec; 35(48):15269-79. PubMed ID: 8952477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations to alter Aspergillus awamori glucoamylase selectivity. III. Asn20-->Cys/Ala27-->Cys, Ala27-->Pro, Ser30-->Pro, Lys108-->Arg, Lys108-->Met, Gly137-->Ala, 311-314 Loop, Tyr312-->Trp and Ser436-->Pro.
    Liu HL; Coutinho PM; Ford C; Reilly PJ
    Protein Eng; 1998 May; 11(5):389-98. PubMed ID: 9681872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.