BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 18588328)

  • 1. Ultraviolet resonance Raman spectroscopy of folded and unfolded states of an integral membrane protein.
    Sanchez KM; Neary TJ; Kim JE
    J Phys Chem B; 2008 Aug; 112(31):9507-11. PubMed ID: 18588328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of tryptophan microenvironment, soluble domain, and vesicle size on the thermodynamics of membrane protein folding: lessons from the transmembrane protein OmpA.
    Sanchez KM; Gable JE; Schlamadinger DE; Kim JE
    Biochemistry; 2008 Dec; 47(48):12844-52. PubMed ID: 18991402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing folded and unfolded states of outer membrane protein a with steady-state and time-resolved tryptophan fluorescence.
    Kim JE; Arjara G; Richards JH; Gray HB; Winkler JR
    J Phys Chem B; 2006 Sep; 110(35):17656-62. PubMed ID: 16942111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Dimensional Stimulated Ultraviolet Resonance Raman Spectra of Tyrosine and Tryptophan; A Simulation Study.
    Ren H; Biggs JD; Mukamel S
    J Raman Spectrosc; 2013 Apr; 44(4):544-559. PubMed ID: 23585708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Analysis of OmpA and Rz/Rz1 of Lytic Bacteriophage from Surabaya, Indonesia.
    Sjahriani T; Wasito EB; Tyasningsih W
    Scientifica (Cairo); 2021; 2021():7494144. PubMed ID: 35096434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV Resonance Raman Spectroscopy as a Tool to Probe Membrane Protein Structure and Dynamics.
    Asamoto DK; Kim JE
    Methods Mol Biol; 2019; 2003():327-349. PubMed ID: 31218624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and DFT Investigations Reveal the Influence of the Outer Coordination Sphere on the Vibrational Spectra of Nickel-Substituted Rubredoxin, a Model Hydrogenase Enzyme.
    Slater JW; Marguet SC; Cirino SL; Maugeri PT; Shafaat HS
    Inorg Chem; 2017 Apr; 56(7):3926-3938. PubMed ID: 28323426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into Protein Structure and Dynamics by Ultraviolet and Visible Resonance Raman Spectroscopy.
    López-Peña I; Leigh BS; Schlamadinger DE; Kim JE
    Biochemistry; 2015 Aug; 54(31):4770-83. PubMed ID: 26219819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV resonance Raman study of cation-π interactions in an indole crown ether.
    Schlamadinger DE; Daschbach MM; Gokel GW; Kim JE
    J Raman Spectrosc; 2011 Apr; 42(4):633-638. PubMed ID: 25635155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photogeneration and Quenching of Tryptophan Radical in Azurin.
    Larson BC; Pomponio JR; Shafaat HS; Kim RH; Leigh BS; Tauber MJ; Kim JE
    J Phys Chem B; 2015 Jul; 119(29):9438-49. PubMed ID: 25625660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxins and antimicrobial peptides: Interactions with membranes.
    Schlamadinger DE; Gable JE; Kim JE
    Proc SPIE Int Soc Opt Eng; 2009 Aug; 7397():. PubMed ID: 25593677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV resonance Raman study of TrpZip2 and related peptides: π-π interactions of tryptophan.
    Schlamadinger DE; Leigh BS; Kim JE
    J Raman Spectrosc; 2012 Oct; 43(10):1459-1464. PubMed ID: 25525290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic and computational study of melittin, cecropin A, and the hybrid peptide CM15.
    Schlamadinger DE; Wang Y; McCammon JA; Kim JE
    J Phys Chem B; 2012 Sep; 116(35):10600-8. PubMed ID: 22845179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UV resonance Raman investigations of peptide and protein structure and dynamics.
    Oladepo SA; Xiong K; Hong Z; Asher SA; Handen J; Lednev IK
    Chem Rev; 2012 May; 112(5):2604-28. PubMed ID: 22335827
    [No Abstract]   [Full Text] [Related]  

  • 15. Insights into the structure and assembly of Escherichia coli outer membrane protein A.
    Reusch RN
    FEBS J; 2012 Mar; 279(6):894-909. PubMed ID: 22251410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophan-lipid interactions in membrane protein folding probed by ultraviolet resonance Raman and fluorescence spectroscopy.
    Sanchez KM; Kang G; Wu B; Kim JE
    Biophys J; 2011 May; 100(9):2121-30. PubMed ID: 21539779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perturbations of aromatic amino acids are associated with iron cluster assembly in ribonucleotide reductase.
    Offenbacher AR; Chen J; Barry BA
    J Am Chem Soc; 2011 May; 133(18):6978-88. PubMed ID: 21486062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence and UV resonance Raman study of peptide-vesicle interactions of human cathelicidin LL-37 and its F6W and F17W mutants.
    Gable JE; Schlamadinger DE; Cogen AL; Gallo RL; Kim JE
    Biochemistry; 2009 Dec; 48(47):11264-72. PubMed ID: 19894716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen bonding and solvent polarity markers in the uv resonance raman spectrum of tryptophan: application to membrane proteins.
    Schlamadinger DE; Gable JE; Kim JE
    J Phys Chem B; 2009 Nov; 113(44):14769-78. PubMed ID: 19817473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tryptophan as a probe of photosystem I electron transfer reactions: a UV resonance Raman study.
    Chen J; Bender SL; Keough JM; Barry BA
    J Phys Chem B; 2009 Aug; 113(33):11367-70. PubMed ID: 19639977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.