BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18588328)

  • 21. Probing folded and unfolded states of outer membrane protein a with steady-state and time-resolved tryptophan fluorescence.
    Kim JE; Arjara G; Richards JH; Gray HB; Winkler JR
    J Phys Chem B; 2006 Sep; 110(35):17656-62. PubMed ID: 16942111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultraviolet resonance Raman studies of quaternary structure of hemoglobin using a tryptophan beta 37 mutant.
    Nagai M; Kaminaka S; Ohba Y; Nagai Y; Mizutani Y; Kitagawa T
    J Biol Chem; 1995 Jan; 270(4):1636-42. PubMed ID: 7829496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fesselin is a natively unfolded protein.
    Khaymina SS; Kenney JM; Schroeter MM; Chalovich JM
    J Proteome Res; 2007 Sep; 6(9):3648-54. PubMed ID: 17676886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A residual structure in unfolded intestinal fatty acid binding protein consists of amino acids that are neighbors in the native state.
    Ropson IJ; Boyer JA; Dalessio PM
    Biochemistry; 2006 Feb; 45(8):2608-17. PubMed ID: 16489754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assignment of the 1511 cm(-1) UV resonance Raman marker band of hemoglobin to tryptophan.
    Zhao X; Chen R; Raj V; Spiro TG
    Biopolymers; 2001; 62(3):158-62. PubMed ID: 11343285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amphipathic polymers: tools to fold integral membrane proteins to their active form.
    Pocanschi CL; Dahmane T; Gohon Y; Rappaport F; Apell HJ; Kleinschmidt JH; Popot JL
    Biochemistry; 2006 Nov; 45(47):13954-61. PubMed ID: 17115690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cooperative binding of L-trp to human tryptophan 2,3-dioxygenase: resonance Raman spectroscopic analysis.
    Fukumura E; Sugimoto H; Misumi Y; Ogura T; Shiro Y
    J Biochem; 2009 Apr; 145(4):505-15. PubMed ID: 19218188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lysozyme fibrillation: deep UV Raman spectroscopic characterization of protein structural transformation.
    Xu M; Ermolenkov VV; He W; Uversky VN; Fredriksen L; Lednev IK
    Biopolymers; 2005 Sep; 79(1):58-61. PubMed ID: 15962278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural responses to cavity-creating mutations in an integral membrane protein.
    Fyfe PK; Potter JA; Cheng J; Williams CM; Watson AJ; Jones MR
    Biochemistry; 2007 Sep; 46(37):10461-72. PubMed ID: 17711306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Picosecond structural dynamics of myoglobin following photodissociation of carbon monoxide as revealed by ultraviolet time-resolved resonance Raman spectroscopy.
    Sato A; Mizutani Y
    Biochemistry; 2005 Nov; 44(45):14709-14. PubMed ID: 16274218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tryptophan supports interaction of transmembrane helices.
    Ridder A; Skupjen P; Unterreitmeier S; Langosch D
    J Mol Biol; 2005 Dec; 354(4):894-902. PubMed ID: 16280130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultraviolet resonance Raman studies reveal the environment of tryptophan and tyrosine residues in the native and partially folded states of the E colicin-binding immunity protein Im7.
    Rodriguez-Mendieta IR; Spence GR; Gell C; Radford SE; Smith DA
    Biochemistry; 2005 Mar; 44(9):3306-15. PubMed ID: 15736941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane-protein topology.
    von Heijne G
    Nat Rev Mol Cell Biol; 2006 Dec; 7(12):909-18. PubMed ID: 17139331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating the potential of fluorinated tyrosines as spectroscopic probes of local protein environments: a UV resonance Raman study.
    Reid PJ; Loftus C; Beeson CC;
    Biochemistry; 2003 Mar; 42(8):2441-8. PubMed ID: 12600211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical spectroscopic methods for probing the conformational stability of immobilised enzymes.
    Ganesan A; Moore BD; Kelly SM; Price NC; Rolinski OJ; Birch DJ; Dunkin IR; Halling PJ
    Chemphyschem; 2009 Jul; 10(9-10):1492-9. PubMed ID: 19360797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Charged gels as orienting media for measurement of residual dipolar couplings in soluble and integral membrane proteins.
    Cierpicki T; Bushweller JH
    J Am Chem Soc; 2004 Dec; 126(49):16259-66. PubMed ID: 15584763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression and biochemical characterization of the periplasmic domain of bacterial outer membrane porin TdeA.
    Kim S; Yum S; Jo WS; Lee BL; Jeong MH; Ha NC
    J Microbiol Biotechnol; 2008 May; 18(5):845-51. PubMed ID: 18633280
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of core packing in a cooperatively folded miniature protein: the ultrafast folding villin headpiece helical subdomain.
    Xiao S; Bi Y; Shan B; Raleigh DP
    Biochemistry; 2009 Jun; 48(21):4607-16. PubMed ID: 19354264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Raman structural markers of tryptophan and histidine side chains in proteins.
    Takeuchi H
    Biopolymers; 2003; 72(5):305-17. PubMed ID: 12949821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microsecond melting of a folding intermediate in a coiled-coil peptide, monitored by T-jump/UV Raman spectroscopy.
    Balakrishnan G; Hu Y; Case MA; Spiro TG
    J Phys Chem B; 2006 Oct; 110(40):19877-83. PubMed ID: 17020373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.