These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 1858895)
1. Impaired renal hemodynamic response to protein feeding in dogs with experimental Fanconi syndrome. Woods LL; Young EW Am J Physiol; 1991 Jul; 261(1 Pt 2):F14-21. PubMed ID: 1858895 [TBL] [Abstract][Full Text] [Related]
2. Regulation of renal hemodynamics after protein feeding: effects of proximal and distal diuretics. Woods LL; Smith BE; De Young DR Am J Physiol; 1993 Feb; 264(2 Pt 2):R337-44. PubMed ID: 8447489 [TBL] [Abstract][Full Text] [Related]
3. Control of renal hemodynamics after protein feeding: role of calcium channels. Woods LL; Smith BE; De Young DR Am J Physiol; 1992 Dec; 263(6 Pt 2):F1044-50. PubMed ID: 1336309 [TBL] [Abstract][Full Text] [Related]
4. Regulation of renal hemodynamics after protein feeding: effects of loop diuretics. Woods LL; DeYoung DR; Smith BE Am J Physiol; 1991 Nov; 261(5 Pt 2):F815-23. PubMed ID: 1951712 [TBL] [Abstract][Full Text] [Related]
5. Role of nitric oxide in the renal hemodynamic response to a meat meal. Salazar FJ; Alberola A; Nakamura T; Granger JP Am J Physiol; 1994 Oct; 267(4 Pt 2):R1050-5. PubMed ID: 7943415 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms of renal vasodilation after protein feeding: role of the renin-angiotensin system. Woods LL Am J Physiol; 1993 Mar; 264(3 Pt 2):R601-9. PubMed ID: 8457015 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms controlling renal hemodynamics and electrolyte excretion during amino acids. Woods LL; Mizelle HL; Montani JP; Hall JE Am J Physiol; 1986 Aug; 251(2 Pt 2):F303-12. PubMed ID: 3740277 [TBL] [Abstract][Full Text] [Related]
8. Delay in Renal Hemodynamic Response to a Meat Meal in Severe Obesity. Anastasio P; Viggiano D; Zacchia M; Altobelli C; Capasso G; Gaspare De Santo N Nephron; 2017; 136(2):151-157. PubMed ID: 28329736 [TBL] [Abstract][Full Text] [Related]
9. Elevation of intrarenal adenosine by maleic acid decreases GFR and renin release. Arend LJ; Thompson CI; Brandt MA; Spielman WS Kidney Int; 1986 Nov; 30(5):656-61. PubMed ID: 3537457 [TBL] [Abstract][Full Text] [Related]
10. Phosphate loading attenuates renal tubular dysfunction induced by maleic acid in the dog. Al-Bander H; Etheredge SB; Paukert T; Humphreys MH; Morris RC Am J Physiol; 1985 Apr; 248(4 Pt 2):F513-21. PubMed ID: 3985158 [TBL] [Abstract][Full Text] [Related]
11. Effect of Experimental Fanconi Syndrome on Tubular Reabsorption of Lithium in Rats. Uwai Y; Nabekura T Pharmacology; 2021; 106(7-8):446-450. PubMed ID: 33979799 [TBL] [Abstract][Full Text] [Related]
12. Control of renal hemodynamics in hyperglycemia: possible role of tubuloglomerular feedback. Woods LL; Mizelle HL; Hall JE Am J Physiol; 1987 Jan; 252(1 Pt 2):F65-73. PubMed ID: 3812702 [TBL] [Abstract][Full Text] [Related]
13. Single-nephron responses to systemic administration of amino acids in dogs. Brown SA; Navar LG Am J Physiol; 1990 Nov; 259(5 Pt 2):F739-46. PubMed ID: 2240229 [TBL] [Abstract][Full Text] [Related]
14. Dysfunction of the proximal tubule underlies maleic acid-induced type II renal tubular acidosis. Al-Bander HA; Weiss RA; Humphreys MH; Morris RC Am J Physiol; 1982 Dec; 243(6):F604-11. PubMed ID: 7149027 [TBL] [Abstract][Full Text] [Related]
15. Systemic factors and renal hemodynamic effects of high-protein meal versus low-protein meal in conscious dogs. Zawada ET; Saelens DA; Alavi FK; Lembke JM Nephron; 1994; 68(1):112-7. PubMed ID: 7991020 [TBL] [Abstract][Full Text] [Related]
16. Renal handling of lysozyme in experimental Fanconi syndrome. Fujita T; Itakura M J Lab Clin Med; 1978 Jul; 92(1):135-40. PubMed ID: 149177 [TBL] [Abstract][Full Text] [Related]
17. Idiopathic de Toni-Debré-Fanconi syndrome with absence of proximal tubular brush border. Manz F; Waldherr R; Fritz HP; Lutz P; Nützenadel W; Reitter B; Schärer K; Schmidt H; Trefz F Clin Nephrol; 1984 Sep; 22(3):149-57. PubMed ID: 6488596 [TBL] [Abstract][Full Text] [Related]
18. Role of endothelium-derived relaxing factor in renal autoregulation in conscious dogs. Baumann JE; Persson PB; Ehmke H; Nafz B; Kirchheim HR Am J Physiol; 1992 Aug; 263(2 Pt 2):F208-13. PubMed ID: 1510118 [TBL] [Abstract][Full Text] [Related]
19. Postprandial regulation of renal hemodynamics: role of pancreatic glucagon. Premen AJ; Hall JE; Smith MJ Am J Physiol; 1985 May; 248(5 Pt 2):F656-62. PubMed ID: 3993789 [TBL] [Abstract][Full Text] [Related]
20. Short-term protein restriction in healthy volunteers: effects on renal hemodynamics and renal response to a meat meal. Wetzels JF; Wiltink PG; van Duijnhoven EM; Hoitsma AJ; Koene RA Clin Nephrol; 1989 Jun; 31(6):311-5. PubMed ID: 2752599 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]