These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 18588958)

  • 1. Application of mode-of-action considerations in human cancer risk assessment.
    Williams GM
    Toxicol Lett; 2008 Aug; 180(2):75-80. PubMed ID: 18588958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive approach for integration of toxicity and cancer risk assessments.
    Butterworth BE; Bogdanffy MS
    Regul Toxicol Pharmacol; 1999 Feb; 29(1):23-36. PubMed ID: 10051416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA reactivity as a mode of action and its relevance to cancer risk assessment.
    Preston RJ
    Toxicol Pathol; 2013 Feb; 41(2):322-5. PubMed ID: 23085981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of in vivo mutation data can inform cancer risk assessment.
    Moore MM; Heflich RH; Haber LT; Allen BC; Shipp AM; Kodell RL
    Regul Toxicol Pharmacol; 2008 Jul; 51(2):151-61. PubMed ID: 18321622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4-Aminobiphenyl and DNA reactivity: case study within the context of the 2006 IPCS Human Relevance Framework for Analysis of a cancer mode of action for humans.
    Cohen SM; Boobis AR; Meek ME; Preston RJ; McGregor DB
    Crit Rev Toxicol; 2006; 36(10):803-19. PubMed ID: 17118730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A decision tree approach for carcinogen risk assessment.
    Butterworth BE; Eldridge SR
    Prog Clin Biol Res; 1995; 391():49-70. PubMed ID: 8532737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evaluation of the mode of action framework for mutagenic carcinogens case study: Cyclophosphamide.
    McCarroll N; Keshava N; Cimino M; Chu M; Dearfield K; Keshava C; Kligerman A; Owen R; Protzel A; Putzrath R; Schoeny R
    Environ Mol Mutagen; 2008 Mar; 49(2):117-31. PubMed ID: 18240158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments in frameworks to consider human relevance of hypothesized modes of action for tumours in animals.
    Meek ME
    Environ Mol Mutagen; 2008 Mar; 49(2):110-6. PubMed ID: 18213650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethyl methanesulfonate toxicity in Viracept--a comprehensive human risk assessment based on threshold data for genotoxicity.
    Müller L; Gocke E; Lavé T; Pfister T
    Toxicol Lett; 2009 Nov; 190(3):317-29. PubMed ID: 19443141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk assessment based upon mechanistic information: application to pharmaceuticals.
    Williams GM
    Prev Med; 1996; 25(1):23. PubMed ID: 8778754
    [No Abstract]   [Full Text] [Related]  

  • 11. IPCS framework for analyzing the relevance of a cancer mode of action for humans.
    Boobis AR; Cohen SM; Dellarco V; McGregor D; Meek ME; Vickers C; Willcocks D; Farland W
    Crit Rev Toxicol; 2006; 36(10):781-92. PubMed ID: 17118728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards a harmonized approach for risk assessment of genotoxic carcinogens in the European Union.
    Crebelli R
    Ann Ist Super Sanita; 2006; 42(2):127-31. PubMed ID: 17033132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanism-based cancer risk assessment for 1,4-dichlorobenzene.
    Butterworth BE; Aylward LL; Hays SM
    Regul Toxicol Pharmacol; 2007 Nov; 49(2):138-48. PubMed ID: 17688981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adjustment factor for mode-of-action uncertainty with dual-mode carcinogens: the case of naphthalene-induced nasal tumors in rats.
    Bogen KT
    Risk Anal; 2008 Aug; 28(4):1033-51. PubMed ID: 18564993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Considerations regarding a permitted daily exposure calculation for ethyl methanesulfonate.
    Müller L; Gocke E
    Toxicol Lett; 2009 Nov; 190(3):330-2. PubMed ID: 19857798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating genotoxicity data to identify a mode of action and its application in estimating cancer risk at low doses: A case study involving carbon tetrachloride.
    Eastmond DA
    Environ Mol Mutagen; 2008 Mar; 49(2):132-41. PubMed ID: 18213651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistics for risk assessment of chemical carcinogens.
    Chen JJ; Chen YJ; Cheng KF
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2007; 25(4):281-312. PubMed ID: 18000784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA damage studies related to the assessment of the role of N-nitroso compounds in human cancer.
    Kyrtopoulos SA; Souliotis VL; Chhabra SK; Anderson LM
    Eur J Cancer Prev; 1996 Sep; 5 Suppl 1():109-14. PubMed ID: 8972304
    [No Abstract]   [Full Text] [Related]  

  • 19. Alkylation of DNA and its aftermath.
    Lawley PD
    Bioessays; 1995 Jun; 17(6):561-8. PubMed ID: 7575500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic considerations in risk assessment for epigenetic tumor-promoting carcinogens.
    Williams GM; Whysner J
    Prog Clin Biol Res; 1995; 391():369-83. PubMed ID: 8532729
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.