These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 18589470)
1. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone. Nagatani Y; Mizuno K; Saeki T; Matsukawa M; Sakaguchi T; Hosoi H Ultrasonics; 2008 Nov; 48(6-7):607-12. PubMed ID: 18589470 [TBL] [Abstract][Full Text] [Related]
2. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods. Hosokawa A Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171 [TBL] [Abstract][Full Text] [Related]
3. Propagation of two longitudinal waves in a cancellous bone with the closed pore boundary. Mizuno K; Nagatani Y; Yamashita K; Matsukawa M J Acoust Soc Am; 2011 Aug; 130(2):EL122-7. PubMed ID: 21877770 [TBL] [Abstract][Full Text] [Related]
4. Development of a numerical cancellous bone model for finite-difference time-domain simulations of ultrasound propagation. Hosokawa A IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1219-33. PubMed ID: 18599410 [TBL] [Abstract][Full Text] [Related]
7. Effect of porosity distribution in the propagation direction on ultrasound waves through cancellous bone. Hosokawa A IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1320-8. PubMed ID: 20529708 [TBL] [Abstract][Full Text] [Related]
8. The finite element method for micro-scale modeling of ultrasound propagation in cancellous bone. Vafaeian B; El-Rich M; El-Bialy T; Adeeb S Ultrasonics; 2014 Aug; 54(6):1663-76. PubMed ID: 24656933 [TBL] [Abstract][Full Text] [Related]
9. Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods. Hosokawa A J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1782-9. PubMed ID: 16240836 [TBL] [Abstract][Full Text] [Related]
10. Numerical investigation of ultrasound refraction caused by oblique orientation of trabecular network in cancellous bone. Hosokawa A IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1389-96. PubMed ID: 21768023 [TBL] [Abstract][Full Text] [Related]
11. Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur. Mizuno K; Matsukawa M; Otani T; Takada M; Mano I; Tsujimoto T IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1480-7. PubMed ID: 18986937 [TBL] [Abstract][Full Text] [Related]
12. In vitro estimation of fast and slow wave parameters of thin trabecular bone using space-alternating generalized expectation-maximization algorithm. Grimes M; Bouhadjera A; Haddad S; Benkedidah T Ultrasonics; 2012 Jul; 52(5):614-21. PubMed ID: 22284937 [TBL] [Abstract][Full Text] [Related]
13. Application of the biot model to ultrasound in bone: direct problem. Fellah ZA; Sebaa N; Fellah M; Mitri FG; Ogam E; Lauriks W; Depollier C IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1508-15. PubMed ID: 18986940 [TBL] [Abstract][Full Text] [Related]
14. Two-wave propagation imaging to evaluate the structure of cancellous bone. Yamashita K; Fujita F; Mizuno K; Mano I; Matsukawa M IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1160-6. PubMed ID: 22711411 [TBL] [Abstract][Full Text] [Related]
15. Numerical analysis of variability in ultrasound propagation properties induced by trabecular microstructure in cancellous bone. Hosokawa A IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):738-47. PubMed ID: 19406702 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the influence of reflection on the attenuation of cancellous bone. Klinge S; Hackl K; Gilbert RP Biomech Model Mechanobiol; 2013 Jan; 12(1):185-99. PubMed ID: 22484789 [TBL] [Abstract][Full Text] [Related]
17. Fast characterization of two ultrasound longitudinal waves in cancellous bone using an adaptive beamforming technique. Taki H; Nagatani Y; Matsukawa M; Mizuno K; Sato T J Acoust Soc Am; 2015 Apr; 137(4):1683-92. PubMed ID: 25920821 [TBL] [Abstract][Full Text] [Related]
18. Numerical investigation of ultrasonic attenuation through 2D trabecular bone structures reconstructed from CT scans and random realizations. Gilbert RP; Guyenne P; Li J Comput Biol Med; 2014 Feb; 45():143-56. PubMed ID: 24480174 [TBL] [Abstract][Full Text] [Related]
19. Numerical investigation of reflection properties of fast and slow longitudinal waves in cancellous bone. Hosokawa A IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):1030-5. PubMed ID: 23661139 [TBL] [Abstract][Full Text] [Related]
20. Numerical simulation of the dependence of quantitative ultrasonic parameters on trabecular bone microarchitecture and elastic constants. Haïat G; Padilla F; Barkmann R; Gluer CC; Laugier P Ultrasonics; 2006 Dec; 44 Suppl 1():e289-94. PubMed ID: 16859726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]