BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 18589947)

  • 21. Treatment process for MSW combustion fly ash laboratory and pilot plant experiments.
    Wilewska-Bien M; Lundberg M; Steenari BM; Theliander H
    Waste Manag; 2007; 27(9):1213-24. PubMed ID: 17157492
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of two types of municipal solid waste incinerator fly ashes with different alkaline reagents in washing experiments.
    Zhu F; Takaoka M; Oshita K; Takeda N
    Waste Manag; 2009 Jan; 29(1):259-64. PubMed ID: 18539449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical speciation of lead in secondary fly ash using X-ray absorption spectroscopy.
    Tian S; Zhu Y; Meng B; Guan J; Nie Z; Die Q; Xu W; Yu M; Huang Q
    Chemosphere; 2018 Apr; 197():362-366. PubMed ID: 29407806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selenium and arsenic speciation in fly ash from full-scale coal-burning utility plants.
    Huggins FE; Senior CL; Chu P; Ladwig K; Huffman GP
    Environ Sci Technol; 2007 May; 41(9):3284-9. PubMed ID: 17539538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimum reaction ratio of coal fly ash to blast furnace cement for effective removal of hydrogen sulfide.
    Asaoka S; Okamura H; Kim K; Hatanaka Y; Nakamoto K; Hino K; Oikawa T; Hayakawa S; Okuda T
    Chemosphere; 2017 Feb; 168():384-389. PubMed ID: 27810538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracking of copper species in incineration fly ashes.
    Hsiao MC; Wang HP; Chang JE; Peng CY
    J Hazard Mater; 2006 Dec; 138(3):539-42. PubMed ID: 16839673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of thermal treatment and cooling methods on municipal solid waste incineration bottom ash with an emphasis on Cl.
    Yang S; Saffarzadeh A; Shimaoka T; Kawano T; Kakuta Y
    Environ Technol; 2016 Oct; 37(20):2564-71. PubMed ID: 26895375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The application of electrocoagulation for the conversion of MSWI fly ash into nonhazardous materials.
    Liao WP; Yang R; Kuo WT; Huang JY
    J Environ Manage; 2014 May; 137():157-62. PubMed ID: 24632404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge.
    Qian G; Cao Y; Chui P; Tay J
    J Hazard Mater; 2006 Feb; 129(1-3):274-81. PubMed ID: 16242842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recovery of soluble chloride salts from the wastewater generated during the washing process of municipal solid wastes incineration fly ash.
    Tang H; Erzat A; Liu Y
    Environ Technol; 2014; 35(21-24):2863-9. PubMed ID: 25176491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EXAFS study of copper in waste incineration fly ashes.
    Hsiao MC; Wang HP; Huang YJ; Yang YW
    J Synchrotron Radiat; 2001 Mar; 8(Pt 2):931-3. PubMed ID: 11512983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stabilization of cesium in alkali-activated municipal solid waste incineration fly ash and a pyrophyllite-based system.
    Shiota K; Nakamura T; Takaoka M; Aminuddin SF; Oshita K; Fujimori T
    Chemosphere; 2017 Nov; 187():188-195. PubMed ID: 28846975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic change of copper in fly ash during de novo synthesis of dioxins.
    Takaoka M; Shiono A; Nishimura K; Yamamoto T; Uruga T; Takeda N; Tanaka T; Oshita K; Matsumoto T; Harada H
    Environ Sci Technol; 2005 Aug; 39(15):5878-84. PubMed ID: 16124329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SEM/EDS and XRD characterization of raw and washed MSWI fly ash sintered at different temperatures.
    Liu Y; Zheng L; Li X; Xie S
    J Hazard Mater; 2009 Feb; 162(1):161-73. PubMed ID: 18555594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recycling MSWI bottom and fly ash as raw materials for Portland cement.
    Pan JR; Huang C; Kuo JJ; Lin SH
    Waste Manag; 2008; 28(7):1113-8. PubMed ID: 17627805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationship between dynamic change of copper and dioxin generation in various fly ash.
    Takaoka M; Shiono A; Yamamoto T; Uruga T; Takeda N; Tanaka T; Oshita K; Matsumoto T; Harada H
    Chemosphere; 2008 Aug; 73(1 Suppl):S78-83. PubMed ID: 18442842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The recycling of the coal fly ash in glass production.
    Erol MM; Küçükbayrak S; Ersoy-Meriçboyu A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(9):1921-9. PubMed ID: 16849136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of Ladle Furnace Slag and Other Industrial By-Products to Encapsulate Chloride in Municipal Solid Waste Incineration Fly Ash.
    Wang Y; Ni W; Suraneni P
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30897758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polychlorinated dibenzo-p-dioxins/dibenzofurans distributions in ash from different units in a municipal solid waste incinerator.
    Lin YS; Chen KS; Lin YC; Hung CH; Chang-Chien GP
    J Hazard Mater; 2008 Jun; 154(1-3):954-62. PubMed ID: 18068298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste: synergy of chloride and sulphate ions.
    Guerrero A; Goñi S; Allegro VR
    J Hazard Mater; 2009 Jun; 165(1-3):903-8. PubMed ID: 19056176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.