These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18590464)

  • 1. Drug delivery systems against leishmaniasis? Still an open question.
    Romero EL; Morilla MJ
    Expert Opin Drug Deliv; 2008 Jul; 5(7):805-23. PubMed ID: 18590464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical characterization by AFM, FT-IR and DSC and biological assays of a promising antileishmania delivery system loaded with a natural Brazilian product.
    Marquele-Oliveira F; Torres EC; Barud Hda S; Zoccal KF; Faccioli LH; Hori JI; Berretta AA
    J Pharm Biomed Anal; 2016 May; 123():195-204. PubMed ID: 26897464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug delivery strategies for therapy of visceral leishmaniasis.
    Gupta S; Pal A; Vyas SP
    Expert Opin Drug Deliv; 2010 Mar; 7(3):371-402. PubMed ID: 20201740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight.
    Jamshaid H; Din FU; Khan GM
    J Nanobiotechnology; 2021 Apr; 19(1):106. PubMed ID: 33858436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug delivery: lessons to be learnt from Leishmania studies.
    Shaw CD; Carter KC
    Nanomedicine (Lond); 2014 Jul; 9(10):1531-44. PubMed ID: 25253500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake and antileishmanial activity of meglumine antimoniate-containing liposomes in Leishmania (Leishmania) major-infected macrophages.
    Borborema SE; Schwendener RA; Osso JA; de Andrade HF; do Nascimento N
    Int J Antimicrob Agents; 2011 Oct; 38(4):341-7. PubMed ID: 21783345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholipid microspheres: a novel delivery mode for targeting antileishmanial agent in experimental leishmaniasis.
    Medda S; Jaisankar P; Manna RK; Pal B; Giri VS; Basu MK
    J Drug Target; 2003 Feb; 11(2):123-8. PubMed ID: 12881199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for the design of orally bioavailable antileishmanial treatments.
    Pham TT; Loiseau PM; Barratt G
    Int J Pharm; 2013 Sep; 454(1):539-52. PubMed ID: 23871737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innovative Solutions for the Control of Leishmaniases: Nanoscale Drug Delivery Systems.
    Wagner V; Minguez-Menendez A; Pena J; Fernández-Prada C
    Curr Pharm Des; 2019; 25(14):1582-1592. PubMed ID: 31223081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Nanosystems and Strategies for Managing Leishmaniasis.
    Vaghela R; Kulkarni PK; Osmani RAM; Bhosale RR; Naga Sravan Kumar Varma V
    Curr Drug Targets; 2017; 18(14):1598-1621. PubMed ID: 27033193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of in vitro and in vivo antileishmanial activities of 2', 6'-dihydroxy-4'-methoxychalcone by entrapment in poly(D,L-lactide) nanoparticles.
    Torres-Santos EC; Rodrigues JM; Moreira DL; Kaplan MA; Rossi-Bergmann B
    Antimicrob Agents Chemother; 1999 Jul; 43(7):1776-8. PubMed ID: 10390243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured delivery systems with improved leishmanicidal activity: a critical review.
    Bruni N; Stella B; Giraudo L; Della Pepa C; Gastaldi D; Dosio F
    Int J Nanomedicine; 2017; 12():5289-5311. PubMed ID: 28794624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel steroid derivatives: synthesis, antileishmanial activity, mechanism of action, and in silico physicochemical and pharmacokinetics studies.
    da Trindade Granato J; Dos Santos JA; Calixto SL; Prado da Silva N; da Silva Martins J; da Silva AD; Coimbra ES
    Biomed Pharmacother; 2018 Oct; 106():1082-1090. PubMed ID: 30119174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An overview of biochemically characterized drug targets in metabolic pathways of Leishmania parasite.
    Raj S; Sasidharan S; Balaji SN; Saudagar P
    Parasitol Res; 2020 Jul; 119(7):2025-2037. PubMed ID: 32504119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promising nanotherapy in treating leishmaniasis.
    de Souza A; Marins DSS; Mathias SL; Monteiro LM; Yukuyama MN; Scarim CB; Löbenberg R; Bou-Chacra NA
    Int J Pharm; 2018 Aug; 547(1-2):421-431. PubMed ID: 29886097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in leishmaniasis treatment.
    Tiuman TS; Santos AO; Ueda-Nakamura T; Filho BP; Nakamura CV
    Int J Infect Dis; 2011 Aug; 15(8):e525-32. PubMed ID: 21605997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liposomes versus lipid nanoparticles: comparative study of lipid-based systems as oryzalin carriers for the treatment of leishmaniasis.
    Lopes RM; Gaspar MM; Pereira J; Eleutério CV; Carvalheiro M; Almeida AJ; Cruz ME
    J Biomed Nanotechnol; 2014 Dec; 10(12):3647-57. PubMed ID: 26000378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of nanotechnology in treatment of leishmaniasis: A Review.
    Akbari M; Oryan A; Hatam G
    Acta Trop; 2017 Aug; 172():86-90. PubMed ID: 28460833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of leishmaniasis: a review and assessment of recent research.
    Elmahallawy EK; Agil A
    Curr Pharm Des; 2015; 21(17):2259-75. PubMed ID: 25543123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meglumine antımoniate-TiO2@Ag nanoparticle combinations reduce toxicity of the drug while enhancing its antileishmanial effect.
    Abamor ES; Allahverdiyev AM; Bagirova M; Rafailovich M
    Acta Trop; 2017 May; 169():30-42. PubMed ID: 28111133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.