These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 18590549)

  • 1. The topology of the bacterial co-conserved protein network and its implications for predicting protein function.
    Karimpour-Fard A; Leach SM; Hunter LE; Gill RT
    BMC Genomics; 2008 Jun; 9():313. PubMed ID: 18590549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of factors affecting prediction of protein-protein interaction networks by phylogenetic profiling.
    Karimpour-Fard A; Hunter L; Gill RT
    BMC Genomics; 2007 Oct; 8():393. PubMed ID: 17967189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topology-function conservation in protein-protein interaction networks.
    Davis D; Yaveroğlu ÖN; Malod-Dognin N; Stojmirovic A; Pržulj N
    Bioinformatics; 2015 May; 31(10):1632-9. PubMed ID: 25609797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential evolutionary conservation of motif modes in the yeast protein interaction network.
    Lee WP; Jeng BC; Pai TW; Tsai CP; Yu CY; Tzou WS
    BMC Genomics; 2006 Apr; 7():89. PubMed ID: 16638125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting whole genome protein interaction networks from primary sequence data in model and non-model organisms using ENTS.
    Rodgers-Melnick E; Culp M; DiFazio SP
    BMC Genomics; 2013 Sep; 14():608. PubMed ID: 24015873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alignment-free protein interaction network comparison.
    Ali W; Rito T; Reinert G; Sun F; Deane CM
    Bioinformatics; 2014 Sep; 30(17):i430-7. PubMed ID: 25161230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-species cluster co-conservation: a new method for generating protein interaction networks.
    Karimpour-Fard A; Detweiler CS; Erickson KD; Hunter L; Gill RT
    Genome Biol; 2007; 8(9):R185. PubMed ID: 17803817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling protein network evolution under genome duplication and domain shuffling.
    Evlampiev K; Isambert H
    BMC Syst Biol; 2007 Nov; 1():49. PubMed ID: 17999763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of protein complexes from multi-relationship protein interaction networks.
    Li X; Wang J; Zhao B; Wu FX; Pan Y
    Hum Genomics; 2016 Jul; 10 Suppl 2(Suppl 2):17. PubMed ID: 27461193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving protein complex prediction by reconstructing a high-confidence protein-protein interaction network of Escherichia coli from different physical interaction data sources.
    Taghipour S; Zarrineh P; Ganjtabesh M; Nowzari-Dalini A
    BMC Bioinformatics; 2017 Jan; 18(1):10. PubMed ID: 28049415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residue interaction network analysis of Dronpa and a DNA clamp.
    Hu G; Yan W; Zhou J; Shen B
    J Theor Biol; 2014 May; 348():55-64. PubMed ID: 24486230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing genome-wide protein-protein interaction networks using multiple strategies with homologous mapping.
    Lo YS; Huang SH; Luo YC; Lin CY; Yang JM
    PLoS One; 2015; 10(1):e0116347. PubMed ID: 25602759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating the reconstruction of genome-scale metabolic networks.
    Notebaart RA; van Enckevort FH; Francke C; Siezen RJ; Teusink B
    BMC Bioinformatics; 2006 Jun; 7():296. PubMed ID: 16772023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of physical and functional protein-protein interaction prediction methods for detecting biological pathways.
    Muley VY; Ranjan A
    PLoS One; 2013; 8(1):e54325. PubMed ID: 23349851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering functional linkages and uncharacterized cellular pathways using phylogenetic profile comparisons: a comprehensive assessment.
    Jothi R; Przytycka TM; Aravind L
    BMC Bioinformatics; 2007 May; 8():173. PubMed ID: 17521444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topology of gene expression networks as revealed by data mining and modeling.
    Lukashin AV; Lukashev ME; Fuchs R
    Bioinformatics; 2003 Oct; 19(15):1909-16. PubMed ID: 14555623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial regulatory networks are extremely flexible in evolution.
    Lozada-Chávez I; Janga SC; Collado-Vides J
    Nucleic Acids Res; 2006; 34(12):3434-45. PubMed ID: 16840530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topology of functional networks predicts physical binding of proteins.
    Saraç OS; Pancaldi V; Bähler J; Beyer A
    Bioinformatics; 2012 Aug; 28(16):2137-45. PubMed ID: 22718785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network based prediction of protein localisation using diffusion kernel.
    Mondal A; Hu J
    Int J Data Min Bioinform; 2014; 9(4):386-400. PubMed ID: 25757246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of protein interaction networks reveals species conservation and divergence.
    Liang Z; Xu M; Teng M; Niu L
    BMC Bioinformatics; 2006 Oct; 7():457. PubMed ID: 17044912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.