These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18590807)

  • 1. The split genes of Nanoarchaeum equitans are an ancestral character.
    Di Giulio M
    Gene; 2008 Sep; 421(1-2):20-6. PubMed ID: 18590807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5'- and 3'-halves.
    Randau L; Münch R; Hohn MJ; Jahn D; Söll D
    Nature; 2005 Feb; 433(7025):537-41. PubMed ID: 15690044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene transfers from nanoarchaeota to an ancestor of diplomonads and parabasalids.
    Andersson JO; Sarchfield SW; Roger AJ
    Mol Biol Evol; 2005 Jan; 22(1):85-90. PubMed ID: 15356278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formal proof that the split genes of tRNAs of Nanoarchaeum equitans are an ancestral character.
    Di Giulio M
    J Mol Evol; 2009 Nov; 69(5):505-11. PubMed ID: 19760446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein trans-splicing and characterization of a split family B-type DNA polymerase from the hyperthermophilic archaeal parasite Nanoarchaeum equitans.
    Choi JJ; Nam KH; Min B; Kim SJ; Söll D; Kwon ST
    J Mol Biol; 2006 Mar; 356(5):1093-106. PubMed ID: 16412462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The origin of genes could be polyphyletic.
    Di Giulio M
    Gene; 2008 Dec; 426(1-2):39-46. PubMed ID: 18706983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The tree of life might be rooted in the branch leading to Nanoarchaeota.
    Di Giulio M
    Gene; 2007 Oct; 401(1-2):108-13. PubMed ID: 17689206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPLITS: a new program for predicting split and intron-containing tRNA genes at the genome level.
    Sugahara J; Yachie N; Sekine Y; Soma A; Matsui M; Tomita M; Kanai A
    In Silico Biol; 2006; 6(5):411-8. PubMed ID: 17274770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The complete set of tRNA species in Nanoarchaeum equitans.
    Randau L; Pearson M; Söll D
    FEBS Lett; 2005 May; 579(13):2945-7. PubMed ID: 15893316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The split genes of Nanoarchaeum equitans have not originated in its lineage and have been merged in another Nanoarchaeota: a reply to Podar et al.
    Di Giulio M
    J Theor Biol; 2014 May; 349():167-9. PubMed ID: 24560724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The non-monophyletic origin of the tRNA molecule and the origin of genes only after the evolutionary stage of the last universal common ancestor (LUCA).
    Di Giulio M
    J Theor Biol; 2006 Jun; 240(3):343-52. PubMed ID: 16289209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park.
    Podar M; Makarova KS; Graham DE; Wolf YI; Koonin EV; Reysenbach AL
    Biol Direct; 2013 Apr; 8():9. PubMed ID: 23607440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation.
    Das S; Paul S; Bag SK; Dutta C
    BMC Genomics; 2006 Jul; 7():186. PubMed ID: 16869956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G:U-Independent RNA Minihelix Aminoacylation by Nanoarchaeum equitans Alanyl-tRNA Synthetase: An Insight into the Evolution of Aminoacyl-tRNA Synthetases.
    Arutaki M; Kurihara R; Matsuoka T; Inami A; Tokunaga K; Ohno T; Takahashi H; Takano H; Ando T; Mutsuro-Aoki H; Umehara T; Tamura K
    J Mol Evol; 2020 Aug; 88(6):501-509. PubMed ID: 32382786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoarchaeal origin of histone H3?
    Friedrich-Jahn U; Aigner J; Längst G; Reeve JN; Huber H
    J Bacteriol; 2009 Feb; 191(3):1092-6. PubMed ID: 19047349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive analysis of archaeal tRNA genes reveals rapid increase of tRNA introns in the order thermoproteales.
    Sugahara J; Kikuta K; Fujishima K; Yachie N; Tomita M; Kanai A
    Mol Biol Evol; 2008 Dec; 25(12):2709-16. PubMed ID: 18832079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary and functional genomics of the Archaea.
    Makarova KS; Koonin EV
    Curr Opin Microbiol; 2005 Oct; 8(5):586-94. PubMed ID: 16111915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The last universal common ancestor (LUCA) and the ancestors of archaea and bacteria were progenotes.
    Di Giulio M
    J Mol Evol; 2011 Jan; 72(1):119-26. PubMed ID: 21079939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales?
    Brochier C; Gribaldo S; Zivanovic Y; Confalonieri F; Forterre P
    Genome Biol; 2005; 6(5):R42. PubMed ID: 15892870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding Properties of Split tRNA to the C-terminal Domain of Methionyl-tRNA Synthetase of Nanoarchaeum equitans.
    Suzuki H; Kaneko A; Yamamoto T; Nambo M; Hirasawa I; Umehara T; Yoshida H; Park SY; Tamura K
    J Mol Evol; 2017 Jun; 84(5-6):267-278. PubMed ID: 28589220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.