These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18590807)

  • 21. Glycyl-tRNA synthetase from Nanoarchaeum equitans: The first crystal structure of archaeal GlyRS and analysis of its tRNA glycylation.
    Fujisawa A; Toki R; Miyake H; Shoji T; Doi H; Hayashi H; Hanabusa R; Mutsuro-Aoki H; Umehara T; Ando T; Noguchi H; Voet A; Park SY; Tamura K
    Biochem Biophys Res Commun; 2019 Apr; 511(2):228-233. PubMed ID: 30771900
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoarchaeum equitans is a living fossil.
    Di Giulio M
    J Theor Biol; 2006 Sep; 242(1):257-60. PubMed ID: 16542685
    [No Abstract]   [Full Text] [Related]  

  • 23. RNA processing in the minimal organism Nanoarchaeum equitans.
    Randau L
    Genome Biol; 2012 Jul; 13(7):R63. PubMed ID: 22809431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Permuted tRNA genes of Cyanidioschyzon merolae, the origin of the tRNA molecule and the root of the Eukarya domain.
    Di Giulio M
    J Theor Biol; 2008 Aug; 253(3):587-92. PubMed ID: 18513750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The 'recently' split transfer RNA genes may be close to merging the two halves of the tRNA rather than having just separated them.
    Di Giulio M
    J Theor Biol; 2012 Oct; 310():1-2. PubMed ID: 22749890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The basal phylogenetic position of Nanoarchaeum equitans (Nanoarchaeota).
    Branciamore S; Gallori E; Di Giulio M
    Front Biosci; 2008 May; 13():6886-92. PubMed ID: 18508702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of Nanoarchaeum equitans tyrosyl-tRNA synthetase and its aminoacylation activity toward tRNA
    Horikoshi T; Noguchi H; Umehara T; Mutsuro-Aoki H; Kurihara R; Noguchi R; Hashimoto T; Watanabe Y; Ando T; Kamata K; Park SY; Tamura K
    Biochem Biophys Res Commun; 2021 Oct; 575():90-95. PubMed ID: 34461441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans.
    Mohanty S; Jobichen C; Chichili VPR; Velázquez-Campoy A; Low BC; Hogue CWV; Sivaraman J
    J Biol Chem; 2015 Nov; 290(45):27280-27296. PubMed ID: 26370083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial group II introns in the raphidophycean flagellate Chattonella spp. suggest a diatom-to-Chattonella lateral group II intron transfer.
    Kamikawa R; Masuda I; Demura M; Oyama K; Yoshimatsu S; Kawachi M; Sako Y
    Protist; 2009 Aug; 160(3):364-75. PubMed ID: 19346162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge-helix-bulge motifs of joined tRNA halves.
    Randau L; Calvin K; Hall M; Yuan J; Podar M; Li H; Söll D
    Proc Natl Acad Sci U S A; 2005 Dec; 102(50):17934-9. PubMed ID: 16330750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence evidence in the archaeal genomes that tRNAs emerged through the combination of ancestral genes as 5' and 3' tRNA halves.
    Fujishima K; Sugahara J; Tomita M; Kanai A
    PLoS One; 2008 Feb; 3(2):e1622. PubMed ID: 18286179
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conserved intron positions in ancient protein modules.
    de Roos AD
    Biol Direct; 2007 Feb; 2():7. PubMed ID: 17288589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The interaction of Nanoarchaeum equitans with Ignicoccus hospitalis: proteins in the contact site between two cells.
    Burghardt T; Junglas B; Siedler F; Wirth R; Huber H; Rachel R
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):127-32. PubMed ID: 19143616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Introns in protein-coding genes in Archaea.
    Watanabe Y; Yokobori S; Inaba T; Yamagishi A; Oshima T; Kawarabayasi Y; Kikuchi H; Kita K
    FEBS Lett; 2002 Jan; 510(1-2):27-30. PubMed ID: 11755525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Split gene origin and periodic introns.
    Elder D
    J Theor Biol; 2000 Dec; 207(4):455-72. PubMed ID: 11093833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In silico screening of archaeal tRNA-encoding genes having multiple introns with bulge-helix-bulge splicing motifs.
    Sugahara J; Yachie N; Arakawa K; Tomita M
    RNA; 2007 May; 13(5):671-81. PubMed ID: 17369313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure and assembly of the functional Nanoarchaeum equitans tRNA splicing endonuclease.
    Mitchell M; Xue S; Erdman R; Randau L; Söll D; Li H
    Nucleic Acids Res; 2009 Sep; 37(17):5793-802. PubMed ID: 19578064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SSO1450--a CAS1 protein from Sulfolobus solfataricus P2 with high affinity for RNA and DNA.
    Han D; Lehmann K; Krauss G
    FEBS Lett; 2009 Jun; 583(12):1928-32. PubMed ID: 19427858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular evolution of the betagamma lens crystallin superfamily: evidence for a retained ancestral function in gamma N crystallins?
    Weadick CJ; Chang BS
    Mol Biol Evol; 2009 May; 26(5):1127-42. PubMed ID: 19233964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unique genes in plants: specificities and conserved features throughout evolution.
    Armisén D; Lecharny A; Aubourg S
    BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.