These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 18590941)

  • 1. Simulating mesoscale transport and diffusion of radioactive noble gases using the Lagrangian particle dispersion model.
    Kim CH; Song CK; Lee SH; Song SK
    J Environ Radioact; 2008 Oct; 99(10):1644-52. PubMed ID: 18590941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of long range transport pathways for radionuclides to Korea during the Fukushima Dai-ichi nuclear accident and their association with meteorological circulations.
    Lee KH; Kim KH; Lee JH; Yun JY; Kim CH
    J Environ Radioact; 2015 Oct; 148():80-91. PubMed ID: 26149179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscale modelling of radioactive contamination formation in Ukraine caused by the Chernobyl accident.
    Talerko N
    J Environ Radioact; 2005; 78(3):311-29. PubMed ID: 15511565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergency preparedness for the accidental release of radionuclides from the Uljin Nuclear Power Plant in Korea.
    Park SU; Lee IH; Joo SJ; Ju JW
    J Environ Radioact; 2017 Dec; 180():90-105. PubMed ID: 29054019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of the atmospheric dispersion of a high release of krypton-85 above a complex coastal terrain, comparison with the predictions of Gaussian models (Briggs, Doury, ADMS4).
    Leroy C; Maro D; Hébert D; Solier L; Rozet M; Le Cavelier S; Connan O
    J Environ Radioact; 2010 Nov; 101(11):937-44. PubMed ID: 20638159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of atmospheric dispersion of radionuclides using an Eulerian-Lagrangian modelling system.
    Basit A; Espinosa F; Avila R; Raza S; Irfan N
    J Radiol Prot; 2008 Dec; 28(4):539-61. PubMed ID: 19029589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emission rate estimation through data assimilation of gamma dose measurements in a Lagrangian atmospheric dispersion model.
    Tsiouri V; Kovalets I; Andronopoulos S; Bartzis JG
    Radiat Prot Dosimetry; 2012 Jan; 148(1):34-44. PubMed ID: 21349880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of RIMPUFF, HYSPLIT, ADMS atmospheric dispersion model outputs, using emergency response procedures, with (85)Kr measurements made in the vicinity of nuclear reprocessing plant.
    Connan O; Smith K; Organo C; Solier L; Maro D; Hébert D
    J Environ Radioact; 2013 Oct; 124():266-77. PubMed ID: 23850583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of 85Kr dispersion from the spent nuclear fuel reprocessing plant in Rokkasho, Japan, using an atmospheric dispersion model.
    Abe K; Iyogi T; Kawabata H; Chiang JH; Suwa H; Hisamatsu S
    Radiat Prot Dosimetry; 2015 Nov; 167(1-3):331-5. PubMed ID: 25948824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of long-range transport aerosols from the Asian Continent to Taiwan by a southward Asian high-pressure system.
    Chuang MT; Fu JS; Jang CJ; Chan CC; Ni PC; Lee CT
    Sci Total Environ; 2008 Nov; 406(1-2):168-79. PubMed ID: 18790518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Update and improvement of the global krypton-85 emission inventory.
    Ahlswede J; Hebel S; Ross JO; Schoetter R; Kalinowski MB
    J Environ Radioact; 2013 Jan; 115():34-42. PubMed ID: 22858641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Urban meteorological modelling for nuclear emergency preparedness.
    Baklanov A; Sørensen JH; Hoe SC; Amstrup B
    J Environ Radioact; 2006; 85(2-3):154-70. PubMed ID: 16157431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of radionuclide (
    Park SU; Lee IH; Ju JW; Joo SJ
    J Environ Radioact; 2016 Oct; 162-163():258-262. PubMed ID: 27294664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of numerical models to predict the atmospheric dispersion of radionuclides.
    Leelőssy Á; Lagzi I; Kovács A; Mészáros R
    J Environ Radioact; 2018 Feb; 182():20-33. PubMed ID: 29179047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Danish emergency response model of the atmosphere (DERMA).
    Sørensen JH; Baklanov A; Hoe S
    J Environ Radioact; 2007; 96(1-3):122-9. PubMed ID: 17481784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The GIS-based SafeAirView software for the concentration assessment of radioactive pollutants after an accidental release.
    Canepa E; D'Alberti F; D'Amati F; Triacchini G
    Sci Total Environ; 2007 Feb; 373(1):32-42. PubMed ID: 17169408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon-14 transfer into rice plants from a continuous atmospheric source: observations and model predictions.
    Koarashi J; Davis PA; Galeriu D; Melintescu A; Saito M; Siclet F; Uchida S
    J Environ Radioact; 2008 Oct; 99(10):1671-9. PubMed ID: 18550232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the Mesoscale Meteorological Model (MM5)-Community Multi-Scale Air Quality Model (CMAQ) performance in hindcast and forecast of ground-level ozone.
    Nghiem le H; Kim Oanh NT
    J Air Waste Manag Assoc; 2008 Oct; 58(10):1341-50. PubMed ID: 18939781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An operative lagrangian model for simulating radioactivity dispersion in the Strait of Gibraltar.
    Periáñez R
    J Environ Radioact; 2005; 84(1):95-101. PubMed ID: 15950333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Lagrangian particle dispersion model "LAPMOD" through short range field tracer test in complex terrain.
    Haq AU; Nadeem Q; Farooq A; Irfan N; Ahmad M; Ali MR
    J Environ Radioact; 2019 Sep; 205-206():34-41. PubMed ID: 31096106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.