These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 18591193)

  • 1. Accelerating and focusing protein-protein docking correlations using multi-dimensional rotational FFT generating functions.
    Ritchie DW; Kozakov D; Vajda S
    Bioinformatics; 2008 Sep; 24(17):1865-73. PubMed ID: 18591193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein docking using spherical polar Fourier correlations.
    Ritchie DW; Kemp GJ
    Proteins; 2000 May; 39(2):178-94. PubMed ID: 10737939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the computation of molecular surface correlations for protein docking using fourier techniques.
    Sakk E
    J Bioinform Comput Biol; 2007 Aug; 5(4):915-35. PubMed ID: 17787063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-protein docking by fast generalized Fourier transforms on 5D rotational manifolds.
    Padhorny D; Kazennov A; Zerbe BS; Porter KA; Xia B; Mottarella SE; Kholodov Y; Ritchie DW; Vajda S; Kozakov D
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):E4286-93. PubMed ID: 27412858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADP_EM: fast exhaustive multi-resolution docking for high-throughput coverage.
    Garzón JI; Kovacs J; Abagyan R; Chacón P
    Bioinformatics; 2007 Feb; 23(4):427-33. PubMed ID: 17150992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rigid-Docking Approaches to Explore Protein-Protein Interaction Space.
    Matsuzaki Y; Uchikoga N; Ohue M; Akiyama Y
    Adv Biochem Eng Biotechnol; 2017; 160():33-55. PubMed ID: 27830312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting 3D structures of protein-protein complexes.
    Vakser IA; Kundrotas P
    Curr Pharm Biotechnol; 2008 Apr; 9(2):57-66. PubMed ID: 18393862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EROS-DOCK: protein-protein docking using exhaustive branch-and-bound rotational search.
    Ruiz Echartea ME; Chauvot de Beauchêne I; Ritchie DW
    Bioinformatics; 2019 Dec; 35(23):5003-5010. PubMed ID: 31125060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring protein-protein interactions using the site-identification by ligand competitive saturation methodology.
    Yu W; Jo S; Lakkaraju SK; Weber DJ; MacKerell AD
    Proteins; 2019 Apr; 87(4):289-301. PubMed ID: 30582220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-protein docking with F(2)Dock 2.0 and GB-rerank.
    Chowdhury R; Rasheed M; Keidel D; Moussalem M; Olson A; Sanner M; Bajaj C
    PLoS One; 2013; 8(3):e51307. PubMed ID: 23483883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated CDOCKER with GPUs, Parallel Simulated Annealing, and Fast Fourier Transforms.
    Ding X; Wu Y; Wang Y; Vilseck JZ; Brooks CL
    J Chem Theory Comput; 2020 Jun; 16(6):3910-3919. PubMed ID: 32374996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PEPSI-Dock: a detailed data-driven protein-protein interaction potential accelerated by polar Fourier correlation.
    Neveu E; Ritchie DW; Popov P; Grudinin S
    Bioinformatics; 2016 Sep; 32(17):i693-i701. PubMed ID: 27587691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein docking by Rotation-Based Uniform Sampling (RotBUS) with fast computing of intermolecular contact distance and residue desolvation.
    Solernou A; Fernandez-Recio J
    BMC Bioinformatics; 2010 Jun; 11():352. PubMed ID: 20584304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring angular distance in protein-protein docking algorithms.
    Vreven T; Hwang H; Weng Z
    PLoS One; 2013; 8(2):e56645. PubMed ID: 23437194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. F2Dock: fast Fourier protein-protein docking.
    Bajaj C; Chowdhury R; Siddavanahalli V
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):45-58. PubMed ID: 21071796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible protein docking refinement using pose-dependent normal mode analysis.
    Venkatraman V; Ritchie DW
    Proteins; 2012 Aug; 80(9):2262-74. PubMed ID: 22610423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FRODOCK: a new approach for fast rotational protein-protein docking.
    Garzon JI; Lopéz-Blanco JR; Pons C; Kovacs J; Abagyan R; Fernandez-Recio J; Chacon P
    Bioinformatics; 2009 Oct; 25(19):2544-51. PubMed ID: 19620099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of near-native structures by clustering protein docking conformations.
    Lorenzen S; Zhang Y
    Proteins; 2007 Jul; 68(1):187-94. PubMed ID: 17397057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast protein-protein docking algorithm using series expansion in terms of spherical basis functions.
    Sumikoshi K; Terada T; Nakamura S; Shimizu K
    Genome Inform; 2005; 16(2):161-73. PubMed ID: 16901099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HexServer: an FFT-based protein docking server powered by graphics processors.
    Macindoe G; Mavridis L; Venkatraman V; Devignes MD; Ritchie DW
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W445-9. PubMed ID: 20444869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.